Skip to main content
Log in

Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The ability of magnetotactic bacteria (MTB) to orient and migrate along magnetic field lines is based on magnetosomes, which are membrane-enclosed intracellular crystals of a magnetic iron mineral. Magnetosome biomineralization is achieved by a process involving control over the accumulation of iron and deposition of the magnetic particle, which has a specific morphology, within a vesicle provided by the magnetosome membrane. In Magnetospirillum gryphiswaldense, the magnetosome membrane has a distinct biochemical composition and comprises a complex and specific subset of magnetosome membrane proteins (MMPs). Classes of MMPs include those with presumed function in magnetosome-directed uptake and binding of iron, nucleation of crystal growth, and the assembly of magnetosome membrane multiprotein complexes. Other MMPs comprise protein families of so far unknown function, which apparently are conserved between all other MTB. The mam and mms genes encode most of the MMPs and are clustered within several operons, which are part of a large, unstable genomic region constituting a putative magnetosome island. Current research is directed towards the biochemical and genetic analysis of MMP functions in magnetite biomineralization as well as their expression and localization during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A–D
Fig. 2

Similar content being viewed by others

Abbreviations

MM :

Magnetosome membrane

MMP :

Magnetosome membrane protein

MTB :

Magnetotactic bacteria

References

  • Amann R, Rossello-Mora R, Schüler D (2000) Phylogeny and in situ identification of magnetotactic bacteria. In Biomineralization, pp. 47–60. Edited by E Baeuerlein. Weinheim: Wiley-VCH

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–37

    Article  CAS  PubMed  Google Scholar 

  • Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–50

    Article  CAS  PubMed  Google Scholar 

  • Balkwill D, Maratea D, BlakemoreR (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408

    CAS  PubMed  Google Scholar 

  • Bäuerlein E (2000) Single magnetic crystals of magnetite (Fe3O4) synthesized in intracytoplasmic vesicles of Magnetospirillum gryphiswaldense. In: Baeuerlein E (ed) Biomineralization. Wiley-VCH, Weinheim, pp 61–80

  • Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed Engl 42:614–41

    Article  PubMed  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190:377–9

    CAS  PubMed  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–9

    Article  CAS  PubMed  Google Scholar 

  • Bochicchio B, Pepe A, Tamburro AM (2001) On (GGLGY) synthetic repeating sequences of lamprin and analogous sequences. Matrix Biol 20:243–50

    Article  CAS  PubMed  Google Scholar 

  • Chung JJ, Shikano S, Hanyu Y, Li M (2002) Functional diversity of protein C-termini: more than zipcoding? Trends Cell Biol 12:146–50

    Article  CAS  PubMed  Google Scholar 

  • Clausen T, Southan C, Ehrmann M (2002) The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:443–55

    CAS  PubMed  Google Scholar 

  • Finan T (2002) Evolving insights: symbiosis islands and horizontal gene transfer. J Bacteriol 184:2855–2856

    Article  CAS  PubMed  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000

    CAS  PubMed  Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    CAS  PubMed  Google Scholar 

  • Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chembiochem 4:522–9

    Article  CAS  PubMed  Google Scholar 

  • Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–82

    PubMed  Google Scholar 

  • Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2003) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol (in press)

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–79

    Google Scholar 

  • Handrick R, Reinhardt S, Schultheiss D, Reichart T, Schüler D, Jendrossek D (2003) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB granule bound protein (phasin). (in press)

  • Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544

    CAS  PubMed  Google Scholar 

  • Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–22

    CAS  PubMed  Google Scholar 

  • Matsunaga T, Tsujimura N, Okamura H, Takeyama H (2000) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem Biophys Res Communications 268:932–937

    Article  CAS  Google Scholar 

  • Moskowitz BM (1995) Biomineralization of magnetic minerals. Rev Geophysics 33:123–128

    Google Scholar 

  • Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995) Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J Biochemistry 118:23–27

    CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–39

    Article  CAS  PubMed  Google Scholar 

  • Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play! Sci STKE 2003:RE7

  • Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–8

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Fukumori Y (2001) Expression and characterization of a magnetosome-associated protein, TPR-containing MAM22, in Escherichia coli. FEBS Lett 491:169–73

    CAS  PubMed  Google Scholar 

  • Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102

    CAS  PubMed  Google Scholar 

  • Safarik I, Safarikova M (2002) Magnetic nanoparticles and biosciences. Monatsheft Chemie 133:737–759

    CAS  Google Scholar 

  • Schleifer K, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. System Appl Microbiol 14:379–385

    Google Scholar 

  • Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour M, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bact 185:5779–5790

    Article  PubMed  Google Scholar 

  • Schüler D (2000) Characterization of the magnetosome membrane in Magnetospirillum gryphiswaldense. In Biomineralization, pp. 109–118. Edited by E Baeuerlein. Weinheim: Wiley-VCH

  • Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307

    PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1997) Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. J Phys IV 7:647–650

    Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed  Google Scholar 

  • Schüler D, Frankel RB (1999) Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    PubMed  Google Scholar 

  • Schüler D, Spring S, Bazylinski DA (1999) Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. System Appl Microbiol 22:466–471

    Google Scholar 

  • Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 179:89–94

    CAS  PubMed  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Google Scholar 

  • Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387:563–4

    Article  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Env Microbiol 68:3663–72

    Article  CAS  Google Scholar 

  • Zurovec M, Sehnal F (2002) Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella. J Biol Chem 277:22639–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge the continued collaboration and invaluable discussions with many colleagues. I am especially grateful to my coworkers and students of the Magneto-Lab at the Max Planck Institute for Marine Microbiology. Research in the author’s lab is supported by the Max Planck Gesellschaft, the Deutsche Forschungsgemeinschaft, and the Biofuture program of the German BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schüler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüler, D. Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense . Arch Microbiol 181, 1–7 (2004). https://doi.org/10.1007/s00203-003-0631-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0631-7

Keywords

Navigation