Skip to main content
Log in

Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures, energetic and thermodynamic parameters of model crown ethers with different donor, cavity and electron donating/ withdrawing functional group have been determined with ab initio MP2 and density functional theory in gas and solvent phase. The calculated values of binding energy/ enthalpy for lithium ion complexation are marginally higher for hard donor based aza and oxa crown compared to soft donor based thia and phospha crown. The calculated values of binding enthalpy for lithium metal ion with 12C4 at MP2 level of theory is in good agreement with the available experimental result. The binding energy is altered due to the inductive effect imparted by the electron donating/ withdrawing group in crown ether, which is well correlated with the values of electron transfer. The role of entropy for extraction of hydrated lithium metal ion by different donor and functional group based ligand has been demonstrated. The HOMO-LUMO gap is decreased and dipole moment of the ligand is increased from gas phase to organic phase because of the dielectric constant of the solvent. The gas phase binding energy is reduced in solvent phase as the solvent molecules weaken the metal-ligand binding. The theoretical values of extraction energy for LiCl salt from aqueous solution in different organic solvent is validated by the experimental trend. The study presented here should contribute to the design of model host ligand and screening of solvent for metal ion recognition and thus can contribute in planning the experiments.

Ab initio modeling for extraction of Li ion from aqueous medium to nitrobenzene by B12C4-CH3 crown ether

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Villani, S (1976) Isotope separation. American Nuclear Society

  2. Symons EA (1985) Sep Sci Technol 20:633–651

    Article  CAS  Google Scholar 

  3. Briant RC, Weinberg AM (1957) Nuclear science and engineering 2:797–803

    CAS  Google Scholar 

  4. Glasstone S, Sesonkse A (1994) Nuclear reactor engineering. Chapman and Hall, London

  5. Ehrlich BE, Diamond JM (1980) J Membrane Biol 52:187–200

    Article  CAS  Google Scholar 

  6. Berridge MJ, Irvine RF (1989) Nature 341:197–205

    Article  CAS  Google Scholar 

  7. Shikama T, Knitter R, Konys J, Muruga T, Tsuchya K, Moeslang A, Kawamura H, Nagata S (2008) Fusion Eng Des 83:976–982

    Article  CAS  Google Scholar 

  8. Heumann KG (Ed) (1985) Topics in Current chemistry, 127, Springler, Berlin

  9. Nishizawa K, Takano T, Ikeda I, Okahara M (1988) Sep Sci Technol 23:333–343

    Article  CAS  Google Scholar 

  10. Pederson CJ (1967) J Am Chem Soc 89:7017–7036

    Article  Google Scholar 

  11. Lemaire M, Guy A, Chomelcand R, Foos J (1991) J Chem Soc Chem Commun 1152-1154

  12. Kim DW, Kang BM, Jeon BK, Jeon YS (2003) J Rad Nu Chem 256:81–85

    Article  CAS  Google Scholar 

  13. Kanzaki Y, Suzuki N, Chitrakar R, Ohsaka T, Abe M (2002) J Phys Chem B 106:988–995

    Article  CAS  Google Scholar 

  14. Sannicolo F, Brenna E, Benincori T, Zotti G, Zecchin S, Schiavon G, Pilati T (1998) Chem Mater 10:2167–2176

    Article  CAS  Google Scholar 

  15. Tokunaga Y, Nakamura T, Yoshioka M, Shimomura Y (2006) Tetrahedron Lett 47:5901–5904

    Article  CAS  Google Scholar 

  16. Mathias LJ (1981) J Macromol Sci Chem A 15:853–876

    Article  Google Scholar 

  17. Wipff G, Weiner P, Kollman P (1984) J Am Chem Soc 104:3249–3258

    Article  Google Scholar 

  18. Hancock RD (1990) Acc Chem Res 23:253–257

    Article  CAS  Google Scholar 

  19. Howard AE, Singh UC, Billeter M, Kollman PA (1998) J Am Chem Soc 110:6974–6984

    Google Scholar 

  20. Van Eerden J, Harkema S, Fed D (1988) J Phys Chem 92:5076–5083

    Article  Google Scholar 

  21. Straatsma TP, McCammon JA (1989) J Chem Phys 91:3631–3637

    Article  CAS  Google Scholar 

  22. Dang LX, Kollman P (1990) J Am Chem Soc 112:5716–5720

    Article  CAS  Google Scholar 

  23. Sun Y, Kollman PA (1992) J Chem Phys 97:5108–5118

    Article  CAS  Google Scholar 

  24. Leuwerink FTH, Harkema S, Briels WJ, Feil DJ (1993) Comput Chem 14:899–906

    Article  CAS  Google Scholar 

  25. Ha YL, Chakraborty AK (1991) J Phys Chem 95:10781–10787

    Article  CAS  Google Scholar 

  26. Ha YL, Chakraborty AK (1993) J Phys Chem 97:11291–11299

    Article  CAS  Google Scholar 

  27. Hay BP, Rustad JR (1994) J Am Chem Soc 116:6316–6326

    Article  CAS  Google Scholar 

  28. Ranghino G, Romano S, Lehn JM, Wipff G (1985) J Am Chem Soc 107:7873–7877

    Article  CAS  Google Scholar 

  29. Jagannadh B, Jagarlapudi A, Sarma RP (1999) J Phys Chem A 103:10993–10997

    Article  CAS  Google Scholar 

  30. El-Azhary AA, Al-Kahtani AA (2004) J Phys Chem A 108:9601–9607

    Article  CAS  Google Scholar 

  31. Seidl ED, Schaefer HF III (1991) J Phys Chem 95:3589–3590

    Article  CAS  Google Scholar 

  32. Wasada H, Tsutsui Y, Yamane S (1996) J Phys Chem 100:7367–7371

    Article  CAS  Google Scholar 

  33. Hill SE, Feller D, Glendenning ED (1998) J Phys Chem 102:3813–3819

    Article  CAS  Google Scholar 

  34. Yamabe T, Hori K, Akagi K, Fukui K (1979) Tetrahedron 35:1065–1072

    Article  CAS  Google Scholar 

  35. Hori K, Yamada H, Yamabe T (1983) Tetrahedron 39:67–73

    Article  CAS  Google Scholar 

  36. Ha YL, Chakraborty AK (1992) J Phys Chem 96:6410–6417

    Article  CAS  Google Scholar 

  37. Glendening ED, Feller D, Thompson MA (1994) J Am Chem Soc 116:10657–10669

    Article  CAS  Google Scholar 

  38. Glendening ED, Feller D (1996) J Am Chem Soc 118:6052–6059

    Article  CAS  Google Scholar 

  39. Feller D (1997) J Phys Chem A 101:2723–2731

    Article  CAS  Google Scholar 

  40. Feller D, Apra E, Nichols JA, Bernholdt DE (1996) J Chem Phys 105:1940–1950

    Article  CAS  Google Scholar 

  41. Feller D, Thompson MA, Kendall RA (1997) J Phys Chem A 101:7292–7298

    Article  CAS  Google Scholar 

  42. Cui C, Cho SJ, Kim KS (1998) J Phys Chem A 102:1119–1123

    Article  CAS  Google Scholar 

  43. Tossel JA (2001) J Phys Chem B 105:11060–11066

    Article  Google Scholar 

  44. Puchta R, van Eldik R (2007) EJIC 1120-1127

  45. De S, Boda A, Ali SM (2010) J Mol Struct (THEOCHEM) 941:90–101

    Article  CAS  Google Scholar 

  46. Boda A, Ali SM, Shenoi MRK, Rao H, Ghosh SK (2011) J Mol Model 17:1091–1108

    Article  CAS  Google Scholar 

  47. Hori K, Inoue T, Tsukube H (1996) Tetrahedron 52:8199–8208

    Article  CAS  Google Scholar 

  48. Okano K, Tsukube H, Hori K (2004) Tetrahedron 60:10877–10882

    Article  CAS  Google Scholar 

  49. Diao KS, Wang HJ, Qiu JM (2009) J Mol Struct (THEOCHEM) 901:157–162

    Article  CAS  Google Scholar 

  50. Diao KS, Bai LJ, Wang HJ (2011) Comput Theor Chem 964:18–24

    Article  CAS  Google Scholar 

  51. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100

    Article  CAS  Google Scholar 

  52. Ray D, Feller D, More MB, Glendening ED, Armentrout PB (1996) J Phys Chem 100:16116–16125

    Article  CAS  Google Scholar 

  53. Boulatov R, Du B, Meyers EA, Shore SG (1999) Inorg Chem 38:4554–4558

    Article  CAS  Google Scholar 

  54. Schmidt MW, Baldridge KK, Boatz JA et al (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  55. Schaftenaar G, Noordik JM (2000) J Comput Aided Mater Des 14:123–134

    Article  CAS  Google Scholar 

  56. Scotto MA, Mallet G, Vasilescu D (2005) J Mol Struct (THEOCHEM) 728:231–242

    Article  Google Scholar 

  57. Parr RG, Yang W (1989) Density functional theory of atom and molecules. Oxford University Press, New York

    Google Scholar 

  58. TURBOMOLE is program package developed by the Quantum Chemistry Group at the University of Karlsruhe, Germany, 1988. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165-169

    Google Scholar 

  59. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  60. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  61. Eckert F, Klamt A (2008) COSMOtherm, version C2.1, Release 01.08. COSMOlogic GmbH & CoKG. Leverkusen, Germany

  62. Klamt A (2005) COSMO-RS from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Amsterdam

  63. Klamt A (1995) J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  64. Eckert F, Klamt A (2002) Am Inst Chem Eng J 48:369–385

    Article  CAS  Google Scholar 

  65. Klamt A, Eckert F (2004) Fluid Phase Equilib 172:43–72

    Article  Google Scholar 

  66. Putnam R, Taylor R, Klamt A, Eckert F, Schiller M (2003) Ind Eng Chem Res 42:3635–3641

    Article  CAS  Google Scholar 

  67. Klamt A, Eckert F, Hornig M (2001) J Comput Aided Mol Des 15:355–365

    Article  CAS  Google Scholar 

  68. Klamt A (2003) Fluid Phase Equilib 206:223–235

    Article  CAS  Google Scholar 

  69. Pearson RG (1988) Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  70. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  71. Haya BM, Hurtado P, Hortel AR, Hamad S, Steill JD, Oomens J (2010) J Phys Chem 114:7048–7054

    Article  Google Scholar 

  72. Boys SF, Bernardi F (1970) Mol Phys 19:553–556

    Article  CAS  Google Scholar 

  73. Rodriguez JD, Vaden TD, Lisy JM (2009) J Am Chem Soc 131:17277–17288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the computer division of the Bhabha Atomic Research Centre for the ANUPAM super computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Musharaf Ali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 96 kb)

ESM Table S1

(DOC 11 kb)

ESM Table S2

(DOC 11 kb)

ESM Table S3

(DOC 12 kb)

ESM Table S4

(DOC 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boda, A., Ali, S.M., Rao, H. et al. Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction. J Mol Model 18, 3507–3522 (2012). https://doi.org/10.1007/s00894-011-1348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1348-1

Keywords

Navigation