Skip to main content

Advertisement

Log in

Recent Advances in Schiff Base Ruthenium Metal Complexes: Synthesis and Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

This review concentrates on recent developments in ruthenium Schiff bases, whose steric and electronic characteristics can be manipulated easily by selecting suitable condensing aldehydes or ketones and primary amines, and their metal complexes. Ruthenium metal-based complexes and Schiff base ligands are rapidly becoming conventionally considered for biological applications (antioxidant, anticancer, antimicrobial), in catalysis, in functional materials, in sensors, and as pigments for dyes. Ruthenium complexes exhibit a broad variety of activities concerning simple Schiff base ligands. This may be due to the octahedral bonding of both Ru(II) and Ru(III) complexes, which acquire an extended reservoir of a three-dimensional framework, providing the potential for an elevated degree of site selectivity for binding to their biological targets. This review provides an overview of this field, and intends to highlight both ligand design and synthetic methodology development, as well as significant applications of these metal complexes. In this review, we summarize our work on the development of ruthenium complexes, which was performed over the last few years.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Fig. 7
Scheme 15
Fig. 8
Scheme 16
Fig. 9
Scheme 17
Fig. 10
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Fig. 11
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Fig. 12
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Fig. 13
Scheme 60
Fig. 14
Scheme 61
Fig. 15
Scheme 62
Fig. 16
Fig. 17
Fig. 18
Scheme 63
Scheme 64
Fig. 19
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Fig. 20
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Fig. 21
Fig. 22
Fig. 23
Scheme 73

Similar content being viewed by others

Abbreviations

SB:

Schiff base

SBL:

Schiff base ligand

p-cym:

Para-cymene

MCF7:

Human breast adenocarcinoma cells

PC3:

Prostate cancer cells

TH:

Transfer hydrogenation

HuH7:

Human hepatocellular carcinoma cells

LoVo:

Human colon adenocarcinoma cells

A549:

Human lung carcinoma cells

16HBE:

Human lung bronchial epithelium cancer cells

WI38:

Human lung fibroblast cancer cells

HeLa:

Human cervical carcinoma cells

SW620:

Metastatic colorectal adenocarcinoma cells

phen:

1,10-Phenanthroline

bipy:

Bipyridine

CT-DNA:

Calf thymus DNA

CyPen:

Cyclopentyl

CyHex:

Cyclohexyl

CyHep:

Cycloheptyl

CyOct:

Cyclooctyl

HSA:

Human serum albumin

HepG2:

Human hepatocellular cancer cells

ER:

Endoplasmic reticulum

HFHC:

High-fat high carbohydrate

PD:

Diet-induced pre-diabetic rats

ppym:

Pyrene-appended polypyridyl

ZR-75-30:

Human breast cancer cells

bz:

Benzene

MCF-7CR:

Human breast adenocarcinoma cells

MCF-10A:

Non-tumorigenic human breast cells

Et3N:

Triethylamine

TOF:

Turnover frequency

TON:

Turnover numbers

phn:

1,2-Phenyldiamine

en:

1,2-Ethanediamine

BGC823:

Human gastric cancer cells

SGC7901:

Human gastric cancer cells

adpa:

4-(4-Aminophenyl) diazenyl-N-(pyridine-2-ylmethylene aniline)

HCC70:

Human breast carcinoma cells

EJ28:

Human bladder cancer cells

TK10:

Human renal cancer cells

UACC62:

Human melanoma cancer cells

DMF:

Dimethylformamide

References

  1. Zoubi WA, Al-Hamdani AAS, Kaseem M (2016) Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl Organometal Chem 30:810–817

    Article  CAS  Google Scholar 

  2. Zoubi WA, Ko YG (2016) Organometallic complexes of Schiff bases: recent progress in oxidation catalysis. J Organomet Chem 822:173–188

    Article  CAS  Google Scholar 

  3. Ejidike IP, Ajibade PA (2015) Transition metal complexes of symmetrical and asymmetrical Schiff bases as antibacterial, antifungal, antioxidant, and anticancer agents: progress and prospects. Rev Inorg Chem 35:191–224

    Article  CAS  Google Scholar 

  4. Hanif M, Hassan M, Rafiq M, Abbas Q, Ishaq A, Shahzadi S, Seo SY, Saleem M (2018) Microwave-assisted synthesis, in vivo anti-inflammatory and in vitro anti-oxidant activities, and molecular docking study of new substituted Schiff base derivatives. Pharm Chem J 52:424–437

    Article  CAS  Google Scholar 

  5. Wilkinson SM, Sheedy TM (2016) New, synthesis and characterization of metal complexes with Schiff base ligands. J Chem Educ 93:351–354

    Article  CAS  Google Scholar 

  6. Ali SMM, Azad MAK, Jesmin M (2012) In vivo anticancer activity of vanillin semicarbazone. Asian Pac J Trop Med 2:438–442

    Article  CAS  Google Scholar 

  7. Biswas A, Das LK, Drew MGB, Aromi G, Gamez P, Ghosh A (2012) Synthesis, crystal structures, magnetic properties and catecholase activity of double phenoxido-bridged penta-coordinated dinuclear Nickel(II) complexes derived from reduced Schiff-base ligands: mechanistic inference of catecholase activity. Inorg Chem 51:7993–8001

    Article  CAS  PubMed  Google Scholar 

  8. Fareed G, Rizwani G, Ahmed M, Versiani M, Fareed N (2017) Schiff bases derived from 1-aminoanthraquinone: a new class of analgesic compounds. PJSIR Ser A Phys Sci 60:122–127

    CAS  Google Scholar 

  9. Jana S, Dalapati S, Guchhait N (2012) Proton transfer assisted charge transfer phenomena in photochromic schiff bases and effect of –NET2 groups to the aniline Schiff bases. J Phys Chem A 116:10948–10958

    Article  CAS  PubMed  Google Scholar 

  10. Facchinetti V, da Reis RR, Gomes CRB, Vasconcelos TRA (2012) Chemistry and biological activities of 1,3-benzothiazoles. Mini Rev Org Chem 9:44–53

    Article  CAS  Google Scholar 

  11. Chow MJ, Licona C, Wong DYQ, Pastorin G, Gaiddon C, Ang WH (2014) Discovery and investigation of anticancer ruthenium–arene Schiff-base complexes via water-promoted combinatorial three-component assembly. J Med Chem 57:6043–6059

    Article  CAS  PubMed  Google Scholar 

  12. Khan SA, Asiri AM, Al-Amry K, Malik MA (2014) Synthesis, characterization, electrochemical studies, and in vitro antibacterial activity of novel thiosemicarbazone. Sci World J 5:592375

    Google Scholar 

  13. Kalaiarasi G, Dharani S, Puschmann H, Prabhakaran R (2018) Synthesis, structural characterization, DNA/protein binding and antioxidant activities of binuclear Ni(II) complexes containing ONS chelating ligands bridged by 1,3-bis(diphenylphosphino)propane. Inorg Chem Commun 97:34–38

    Article  CAS  Google Scholar 

  14. Liu X, Hamon JH (2019) Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord Chem Rev 389:94–118

    Article  CAS  Google Scholar 

  15. Li Z, Yan H, Chang G, Hong M, Dou J, Niu M (2016) Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: synthesis, characterization, cytotoxicity, protein and DNA-binding properties. J Photochem Photobiol B 163:403–412

    Article  CAS  PubMed  Google Scholar 

  16. Dhara K, Roy P, Ratha J, Manassero M, Banerjee P (2007) Synthesis, crystal structure, magnetic property and DNA cleavage activity of a new terephthalate-bridged tetranuclear copper(II) complex. Polyhedron 26:4509–4517

    Article  CAS  Google Scholar 

  17. Ou HW, Lo KH, Du WT, Lu WY, Chuang WJ, Huang BH, Chen HY, Lin CC (2016) Synthesis of sodium complexes supported with NNO-tridentate Schiff base ligands and their applications in the ring-opening polymerization of l-lactide. Inorg Chem 55:1423–1432

    Article  CAS  PubMed  Google Scholar 

  18. Zhou L, Kwok CC, Cheng G, Zhang H, Che CM (2013) Efficient red organic electroluminescent devices by doping platinum(II) Schiff base emitter into two host materials with stepwise energy levels. Opt Lett 38:2373–2375

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Wang L, Zhong A, Huang G, Wu F, Li D, Teng M, Wang J, Han D (2019) Deep red PhOLED from dimeric salophen platinum(II) complexes. Dyes Pigm 162:590–598

    Article  CAS  Google Scholar 

  20. Zhang J, Zhu X, Zhong A, Jia W, Wu F, Li D, Tong H, Wu C, Tang W, Zhang P, Wang L, Han D (2017) New platinum(II) one-armed Schiff base complexes for blue and orange PHOLEDs applications. Org Electron 42:153–162

    Article  CAS  Google Scholar 

  21. Zhang J, Dai G, Wu F, Li D, Gao D, Jin H, Chen S, Zhu X, Huang C, Han D (2016) Efficient and tunable phosphorescence of new platinum(II) complexes based on the donor–π–acceptor Schiff bases. J Photochem Photobiol 316:12–18

    Article  CAS  Google Scholar 

  22. Alreja P, Kaur N (2018) Probing anion and cation with novel salicylidene Schiff base receptor appended with 1, 10-phenanthroline: mimicking inhibit molecular logic gate. Inorg Chim Acta 480:127–131

    Article  CAS  Google Scholar 

  23. Jeevadason AW, Murugavel KK, Neelakantan MA (2014) Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew Sustain Energy Rev 36:220–227

    Article  CAS  Google Scholar 

  24. Zhang J, Zhong A, Huang G, Yang M, Li D, Teng M, Han D (2020) Enhanced efficiency with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes. Sol Energy 209:316–324

    Article  CAS  Google Scholar 

  25. Lin SH, Chen FR, Zhou YF, Wang JN, Zhang H, Xu JG (2009) Enhanced fluorescence sensing of hydroxylated organotins by a boronic acid-linked Schiff base. Chem Commun 2009:4179–4181

    Google Scholar 

  26. Ganguly A, Paul BK, Ghosh S, Kar S, Guchhait N (2013) Selective fluorescence sensing of Cu(II) and Zn(II) using a new Schiff base-derived model compound: naked eye detection and spectral deciphering of the mechanism of sensory action. Analyst 138:6532–6541

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Xu L, Wong WY (2018) Energy materials based on metal Schiff base complexes. Coord Chem Rev 355:180–198

    Article  CAS  Google Scholar 

  28. Xin Y, Yuan J (2012) Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym Chem 3:3045–3055

    Article  CAS  Google Scholar 

  29. Yufanyi DM, Abbo HS, Titinchi SJJ, Neville T (2020) Platinum(II) and Ruthenium(II) complexes in medicine: antimycobacterial and anti-HIV activities. Coord Chem Rev 414:213–285

    Article  CAS  Google Scholar 

  30. Reedijk J (2013) Reference module in chemistry, sciences and chemical engineering. Bioinorg 20:20

    Google Scholar 

  31. Sodhi RK, Paul S (2019) Metal complexes in medicine: an overview and update from drug design perspective. Cancer Ther Oncol Int J 14:555883

    Google Scholar 

  32. Farrell N (2013) Metal complexes as drugs and chemotherapeutic agents. Comp Coord Chem II 9:809–840

    Google Scholar 

  33. Clarke MJ, Zhu F, Frasca DR (1999) Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev 99:2511–2534

    Article  CAS  PubMed  Google Scholar 

  34. Dyson PJ (2007) Systematic design of a targeted organometallic antitumour drug in pre-clinical development. CHIMIA Int J Chem 61:698–703

    Article  CAS  Google Scholar 

  35. Kanoujiya R, Singh M, Singh J, Srivastava S (2020) Ruthenium based anticancer compounds and their importance. J Sci Res 64:364–368

    Google Scholar 

  36. Zeller WJ, Fruhauf S, Chen G, Keppler BK, Frei E, Kaufmann M (1991) Chemoresistance in rat ovarian tumours. Eur J Cancer 27:62–67

    Article  CAS  PubMed  Google Scholar 

  37. Coluccia M, Sava G, Loseto F, Nassi A, Boccarelli A, Giordano D, Alessio E, Mestroni G (1993) Anti-leukaemic action of RuCI2(DMSO)4 isomers and prevention of brain involvement on P388 leukaemia and on P3881/DDP subline. Eur J Cancer 29:1873–1879

    Article  Google Scholar 

  38. Ali I, Wani WA, Saleem K, Wesselinova D (2013) Syntheses, DNA binding and anticancer profiles of l-glutamic acid ligand and its Copper(II) and Ruthenium(III) complexes. Med Chem 9:11–21

    Article  CAS  PubMed  Google Scholar 

  39. Maheswari U, Palaniandavar M (2004) DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines–effect of hydrogen-bonding on DNA-binding affinity. J Inorg Biochem 98:219–230

    Article  CAS  Google Scholar 

  40. Chao H, Mei WJ, Huang QW, Ji LN (2002) DNA binding studies of ruthenium(II) complexes containing asymmetric tridentate ligands. J Inorg Biochem 92:165–170

    Article  CAS  PubMed  Google Scholar 

  41. Fruhauf S, Zeller WJ (1991) New platinum, titanium, and ruthenium complexes with different patterns of DNA damage in rat ovarian tumor cells. Cancer Res 51:2943–2948

    CAS  PubMed  Google Scholar 

  42. Gallori E, Vettori C, Alessio E, Vilchez FG, Vilaplana R, Orioli P, Casini A, Messori L (2000) DNA as a possible target for antitumor Ruthenium(III) complexes. Arch Biochem Biophys 376:156–162

    Article  CAS  PubMed  Google Scholar 

  43. Zhang CX, Lippard SJ (2003) New metal complexes as potential therapeutics. Curr Opin Chem Biol 7:481–489

    Article  CAS  PubMed  Google Scholar 

  44. Duan L, Fischer A, Xu Y, Sun L (2009) Isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging ligand as an intermediate for catalytic water oxidation. J Am Chem Soc 131:10397–10399

    Article  CAS  PubMed  Google Scholar 

  45. Kilpin KJ, Dyson PJ (2013) Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem Sci 4:1410–1419

    Article  CAS  Google Scholar 

  46. Bastos CM, Gordon KA, Ocain TD (1998) Synthesis and immunosuppressive activity of ruthenium complexes. Bioorg Med Chem Lett 8:147–150

    Article  CAS  PubMed  Google Scholar 

  47. Levina A, Mitra A, Lay PA (2009) Recent developments in ruthenium anticancer drugs. Metallomics 1:458–470

    Article  CAS  PubMed  Google Scholar 

  48. Kostova I (2006) Ruthenium complexes as anticancer agents. Curr Med Chem 13:1085–1107

    Article  CAS  PubMed  Google Scholar 

  49. Li F, Collins JG, Keene FR (2015) Ruthenium complexes as antimicrobial agents. Chem Soc Rev 44:2529–2542

    Article  CAS  PubMed  Google Scholar 

  50. Shi G, Monro S, Hennigar R, Colpitts J, Fong J, Kasimova K, DeCoste R, Spencer C, Chamberlain L, Mandel A, Lilge L, McFarland SA (2015) Ru(II) dyads derived from α-oligothiophenes: a new class of potent and versatile photosensitizers for PDT. Coord Chem Rev 282–283:127–138

    Article  CAS  Google Scholar 

  51. Heinemann F, Karges J, Gasser G (2017) Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc Chem Res 50:2727–2736

    Article  CAS  PubMed  Google Scholar 

  52. Gill MR, Thomas JA (2012) Ruthenium(II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics. Chem Soc Rev 41:3179–3192

    Article  CAS  PubMed  Google Scholar 

  53. Boynton AN, Marce L, Barton JK (2016) [Ru(Me4phen)2d ppz]2+, a light switch for DNA mismatches. J Am Chem Soc 138:5020–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villemin E, Ong YC, Thomas CM, Gasser G (2019) Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nat Rev Chem 3:261–282

    Article  CAS  Google Scholar 

  55. Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS (2017) The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 46:5771–5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Klausner RD, Renswoude JV, Ashwell G, Kempf C, Schechterg AN, Dean A, Bridges KR (1983) Receptor-mediated endocytosis of transferrin in K562 cells. J Am Chem Soc 258:4715–4724

    CAS  Google Scholar 

  57. Patil-Deshmukh AB, Mohite SS, Chavan SS (2020) Ru(II)-polypyridine complexes with alkynyl Schiff base ligand: influence of π-conjugation, donor/acceptor substituents, and counter anions on electrochemical, luminescence, and catalytic properties. J Coord Chem 73:1028–1044

    Article  CAS  Google Scholar 

  58. Puthilibai G, Vasudhevan S (2019) Synthesis, DNA binding, anticancer and cytotoxic evaluation of novel ruthenium(II) isatin based Schiff base complex. Rasayan J Chem 12:855–859

    Article  CAS  Google Scholar 

  59. Adhikari S, Kaminsky W, Rao KM (2017) Investigation of the coordination chemistry of multidentate azine Schiff-base ligands towards d6 half-sandwich metal complexes. J Organomet Chem 848:95–103

    Article  CAS  Google Scholar 

  60. Al-Saif FA, Alibrahim KA, Alosaimi EH, Assirey E, El-Shahawi MS, Refat MS (2018) Synthesis, spectroscopic and electrochemical characterizations of new Schiff nase chelator towards Ru3+, Pt4+ and Ir3+ metal ions. J Mol Liq 266:242–241

    Article  CAS  Google Scholar 

  61. Alsalme A, Laeeq S, Dwivedi S, Khan MS, Al-Farhan K, Musarrat J, Khan RA (2016) Synthesis, characterization of α-Amino acid Schiff base derived Ru/Pt complexes: induces cytotoxicity in HepG2 cell via protein binding and ROS generation. Spectrochim Acta A 163:1–7

    Article  CAS  Google Scholar 

  62. El-Shobaky AR (2015) Synthesis, molecular modeling and DNA binding of new Schiff base ruthenium(II) complex and its catalytic oxidation, synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry. Synth React Inorg M 45:1481–1488

    Article  CAS  Google Scholar 

  63. Ghosh B, Adak P, Naskar S, Pakhira B, Mitra P, Chattopadhyay SK (2017) Ruthenium(II/III) complexes of redox non-innocent bis(thiosemicarbazone) ligands: synthesis, X-ray crystal structures, electrochemical, DNA binding and DFT studies. Polyhedron 131:74–85

    Article  CAS  Google Scholar 

  64. Ji J, Chen X, Lin H, Jia AQ, Zhang QF (2019) Ruthenium(II) complexes with substituted 2-(methylthio)-phenylsalicylaldimine Schiff-base ligands. Inorg Chim Acta 494:105–111

    Article  CAS  Google Scholar 

  65. Kamalesu S, Swarnalatha K, Subramanian R, Muralidharan K, Gomathi S (2017) Polypyridylhydrazone based Ruthenium(II) complexes: spectral and computational analysis. Inorg Chim Acta 461:35–44

    Article  CAS  Google Scholar 

  66. Mabuza LP, Gamede MW, Maikoo S, Booysen IN, Ngubane PS, Khathi A (2019) Cardioprotective effects of a ruthenium (II) Schiff base complex in diet-induced prediabetic rats. Diabetes Metab Syndr Obes Targets Ther 12:217–223

    Article  CAS  Google Scholar 

  67. Mariappan M, Alagarsamy R, Panneerselvam AP, Veerappan A, Rajendran S, Arunachalam J (2018) Synthesis, solvatochromism, photochemistry, DNA binding, photocleavage, cytotoxicity and molecular docking studies of a ruthenium(II) complex bearing photoactive subunit. J Photochem Photobiol A Chem 356:617–626

    Article  CAS  Google Scholar 

  68. Paul H, Sen B, Mondal TK, Chattopadhyay P (2017) Synthesis, characterization, redox behavior, DNA and protein binding and antibacterial activity studies of ruthenium(II) complexes of bidentate Schiff bases. Nucleosides Nucleotides Nucleic Acids 36:520–542

    Article  CAS  PubMed  Google Scholar 

  69. Premkumar P, Manikandan R, Nirmala M, Viswanathamurthi P, Malecki JG (2017) Efficient and versatile catalysis for β-alkylation of secondary alcohols through hydrogen auto transfer process with newly designed ruthenium(II) complexes containing ON donor aldazine ligands. J Coord Chem 70:3065–3075

    Article  CAS  Google Scholar 

  70. Ramadan RM, Elsheemy WM, Hassan NS, Aziz AAA (2018) Synthesis, spectroscopic characterization, thermal behaviour, in vitro antimicrobial and anticancer activities of novel ruthenium tricarbonyl complexes containing monodentate V-shaped Schiff bases. Appl Organometal Chem 32:e4180

    Article  CAS  Google Scholar 

  71. Ramadan RM, Al-Nasr AKA, Ali OAM (2018) Synthesis, spectroscopic, DFT studies and biological activity of some ruthenium carbonyl derivatives of bis-(salicylaldehyde) phenylenediimine Schiff base ligand. J Mol Struct 1161:100–107

    Article  CAS  Google Scholar 

  72. Sampath K, Mohanraj M, Jayabalakrishnan C (2017) DNA interaction and antioxidant studies of ruthenium(II) complexes containing mixed ligands. Inorg Nano-Met Chem 47:1049–1056

    Article  CAS  Google Scholar 

  73. Sarhan AM, Elsayed SA, Mashaly MM, El-Hendawy AM (2019) Oxovanadium(IV) and ruthenium(II) carbonyl complexes of ONS donor ligands derived from dehydroacetic acid and dithiocarbazate: synthesis, characterization, antioxidant activity, DNA binding and in vitro cytotoxicity. Appl Organometal Chem 33:4655

    Article  CAS  Google Scholar 

  74. Tang L-H, Chen X, Jia A-Q, Xin Z, Zhang Q-F (2018) Ruthenium(II) complexes of bis-guanidine ligands with substituted Schiff bases. Syntheses and characterization of [RuH(CO){κ2-N, N-(2-HO-ArCH=NN)2CNH2}(PPh3)2] (Ar = C6H4-, 5-Cl-C6H3-, 3,5-Br 2C6H2-). Inorg Chim Acta 480:108–112

    Article  CAS  Google Scholar 

  75. Wang C, Chen Y, Fu WF (2015) New platinum and ruthenium Schiff base complexes for water splitting reactions. Dalton Trans 44:14483–14493

    Article  CAS  PubMed  Google Scholar 

  76. Wang CJ, Xu WF, Tong BH, Jia AQ, Zhang QF (2017) Heteroleptic ruthenium(II)/(III) 2,2′-bipyridine/1,10-phenanthroline complexes incorporating bidentate Schiff base N, O-ligands. J Coord Chem 70:1617–1631

    Article  CAS  Google Scholar 

  77. Wu F, Wang CJ, Lin H, Jia AQ, Zhang QF (2018) Syntheses, structures and catalytic properties of ruthenium(II) nitrosyl complexes with bidentate and tetradentate Schiff base ligands. Inorg Chim Acta 471:718–723

    Article  CAS  Google Scholar 

  78. Zhang Y, Hu PC, Cai P, Yang F, Cheng GZ (2015) Synthesis, characterization, crystal structure, cytotoxicity, apoptosis and cell cycle arrest of ruthenium(II) complex [Ru(bpy)2(adpa)](PF6)2 (bpy = 2,2’-bipyridine, adpa = 4-(4-aminophenyl) diazenyl-N-(pyridin-2-ylmethylene)aniline). RSC Adv 5:11591–11598

    Article  CAS  Google Scholar 

  79. Kahrovic E, Zahirovic A, Turkusic E, Bektas S (2016) A dinuclear ruthenium(II) Schiff Base complex with dissimilar coordination: synthesis, characterization and biological activity. Z Anorg Allg Chem 6:480–485

    Article  CAS  Google Scholar 

  80. Kahrovic E, Zahirovic A, Pavelic SK, Turkusic E, Harej A (2017) In vitro anticancer activity of binuclear Ru(II) complexes with Schiff bases derived from 5-substituted salicylaldehyde and 2-aminopyridine with notably low IC50 values. J Coord Chem 70:1683–1697

    Article  CAS  Google Scholar 

  81. Zhang Y, Lai L, Cai P, Cheng GZ, Liu Y (2015) Synthesis, characterization and anticancer activity of dinuclear ruthenium(II) complexes linked by alkyl chain. New J Chem 39:5805–5812

    Article  CAS  Google Scholar 

  82. Aktas A, Ispir E (2016) Synthesis and characterization of ruthenium(II) complexes with new Schiff base ligand from the reaction of 4-(aminomethyl)phenol with picolinaldehyde. JKSUES 19:37–40

    Google Scholar 

  83. Neethu KS, Eswaran J, Theetharappan M, Nattamai SPB, Neelakantan MA, Velusamy KM (2019) Organoruthenium (II) complexes featuring pyrazole-linked Schiff base ligands: crystal structure, DNA/BSA interactions, cytotoxicity and molecular docking. App Organometal Chem 33:e4751

    Article  CAS  Google Scholar 

  84. Lapasam A, Banothu V, Addepally U, Kollipara MR (2020) Half-sandwich arene ruthenium, rhodium and iridium thiosemicarbazone complexes: synthesis, characterization and biological evaluation. J Chem Sci 132:1–10

    Article  CAS  Google Scholar 

  85. Calik HS, Ispir E, Karabuga S, Aslantas M (2016) Ruthenium (II) complexes of NO ligands: synthesis, characterization and application in transfer hydrogenation of carbonyl compounds. J Organomet Chem 801:122–129

    Article  CAS  Google Scholar 

  86. Erdem E, Sari EY, Kilincarsalan R, Kabay N (2008) Synthesis and characterization of azo-linked Schiff bases and their nickel(II), copper(II), and zinc(II) complexes. Transit Met Chem 34:167–174

    Article  CAS  Google Scholar 

  87. Slassi S, Fix-Tailler A, Larcher G, Amine A, El-Ghayoury A (2019) Imidazole and azo-based Schiff bases ligands as highly active antifungal and antioxidant components. Heteroat Chem 2019:1–8

    Article  CAS  Google Scholar 

  88. Ali Y, Hamid SA, Rashid U (2018) Biomedical applications of aromatic azo compounds. Mini Rev Med Chem 18:1548–1558

    Article  CAS  PubMed  Google Scholar 

  89. Inan A, Sunbul AB, Ikiz M, Tayhan SE, Bilgin S, Elmastas M, Sayin K, Ceyhan G, Kose M, Ispir E (2018) Half-sandwich ruthenium(II) arene complexes bearing the azoazomethine ligands: electrochemical, computational, antiproliferative and antioxidant properties. J Organomet Chem 870:76–89

    Article  CAS  Google Scholar 

  90. Chen C, Ji J, Wang CJ, Jia AQ, Zhang QF (2020) Synthesis, characterization and crystal structures of half-sandwich ruthenium complexes with bidendate chiral Schiff-base ligands. J Organomet Chem 910:121129

    Article  CAS  Google Scholar 

  91. Nagalakshmi V, Nandhini R, Brindha V, Krishnamoorthy BS, Balasubramani K (2020) Half-sandwich ruthenium(II) complexes containing biphenylamine based Schiff base ligands: synthesis, structure and catalytic activity in amidation of various aldehydes. J Organomet Chem 912:121175

    Article  CAS  Google Scholar 

  92. Kollipara MR, Shadap L, Banothu V, Agarwal N, Poluri KM, Kaminsky W (2020) Fluorenone Schiff base derivative complexes of ruthenium, rhodium and iridium exhibiting efficient antibacterial activity and DNA-binding affinity. J Organomet Chem 915:121246

    Article  CAS  Google Scholar 

  93. Buldurun K, Ozdemir M (2020) Ruthenium(II) complexes with pyridine based Schiff base ligands: synthesis, structural characterization and catalytic hydrogenation of ketones. J Mol Struct 1202:127266

    Article  CAS  Google Scholar 

  94. Bingol M, Turan N (2020) Schiff base and metal(II) complexes containing thiophene-3-carboxylate: synthesis, characterization and antioxidant activities. J Mol Struct 1205:127542

    Article  CAS  Google Scholar 

  95. Balaji S, Subarkhan MKM, Ramesh R, Wang H, Semeril D (2020) Synthesis and structure of arene Ru(II) N⋀O− chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics 39:1366–1375

    Article  CAS  Google Scholar 

  96. Chen S, Liu X, Huang J, Ge X, Wang Q, Yao M, Shao Y, Liu T, Yuan XA, Tian L, Liu Z (2020) Triphenylamine/carbazole-modified ruthenium (II) Schiff base compounds: synthesis, biological activity and organelle targeting. Dalton Trans 49:8774–8784

    Article  CAS  PubMed  Google Scholar 

  97. Abouzayed FI, Emam SM, Saeyda AAE (2020) Synthesis, characterization and biological activity of nano-sized Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of tetradendate hydrazone ligand. J Mol Struct 1216:128314

    Article  CAS  Google Scholar 

  98. Adhikari S, Kaminsky W, Kollipara MR (2017) Pyridyl azine Schiff-base ligands exhibiting unexpected bonding modes towards ruthenium, rhodium and iridium half-sandwich complexes: synthesis and structural studies. J Organomet Chem 836–837:8–16

    Article  CAS  Google Scholar 

  99. Anitha P, Manikandan R, Prakash G, Pachiyappan B, Viswanathamurthi P, Malecki JG (2015) Ruthenium(II) 8-quinolinolates: synthesis, characterization, crystal structure and catalysis in the synthesis of 2-oxazolines. J Organomet Chem 791:266–273

    Article  CAS  Google Scholar 

  100. Buldurun K, Turan N, Savci A, Colak N (2019) Synthesis, structural characterization and biological activities of metal(II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru(II) complexes transfer hydrogenation. J Saudi Che Soc 23:205–214

    Article  CAS  Google Scholar 

  101. Ekengard E, Glans L, Cassells I, Fogeron T, Govender P, Stringer T, Chellan P, Lisensky GC, Hersh WH, Doverbratt I, Lidin S, Kock C, Smith PJ, Smith GS, Nordlander E (2015) Antimalarial activity of ruthenium(II) and osmium(II) arene complexes with mono- and bidentate chloroquine analogue ligands. Dalton Trans 44:19314–19329

    Article  CAS  PubMed  Google Scholar 

  102. Cassells I, Stringer T, Hutton AT, Prince S, Smith GS (2018) Impact of various lipophilic substituents on ruthenium(II), rhodium(III) and iridium(III) salicylaldimine based complexes: synthesis, in vitro cytotoxicity studies and DNA interactions. J Bio Inorg Chem 23:763–774

    Article  CAS  Google Scholar 

  103. Chow MJ, Babak MV, Wong DYQ, Pastorin G, Gaiddon C, Ang WH (2016) Structural determinants of p53-independence in anticancer ruthenium-arene Schiff-base complexes. Mol Pharm 13:2543–2554

    Article  CAS  PubMed  Google Scholar 

  104. Chow MJ, Babak MV, Tan KW, Cheong MC, Pastorin G, Gaiddon C, Ang WH (2018) Induction of the endoplasmic reticulum stress pathway by highly cytotoxic organoruthenium Schiff-base complexes. Mol Pharm 15:3020–3031

    Article  CAS  PubMed  Google Scholar 

  105. Devagi G, Dallemer F, Kalaivani P, Prabhakaran R (2018) Organometallic ruthenium(II) complexes containing NS donor Schiff bases: synthesis, structure, electrochemistry, DNA/BSA binding, DNA cleavage, radical scavenging and antibacterial activities. J Organomet Chem 854:1–14

    Article  CAS  Google Scholar 

  106. Gichumbi JM, Friedrich HB, Omondi B (2016) Application of arene ruthenium(II) complexes withpyridine-2-carboxaldimine ligands in the transfer hydrogenation of ketones. J Mol Catal A Chem 416:29–38

    Article  CAS  Google Scholar 

  107. Gopalakrishnan D, Srinath S, Baskar B, Bhuvanesh NSP, Ganeshpandian M (2019) Biological and catalytic evaluation of Ru(II) p-cymene complexes of Schiff base ligands: impact of ligand appended moiety on photo-induced DNA and protein cleavage, cytotoxicity and CH activation. Appl Organometal Chem 33:e4756

    Article  CAS  Google Scholar 

  108. Haghdoost M, Golbaghi G, Letourneau M, Patten SA, Castonguay A (2017) Lipophilicity antiproliferative activity relationship study leads to the preparation of a ruthenium(II) arene complex with considerable in vitro cytotoxicity against cancer cells and a lower in vivo toxicity in zebrafish embryos than clinically approved cis-platin. Eur J Med Chem 132:282–293

    Article  CAS  PubMed  Google Scholar 

  109. Ispir E, Sahin E, İkiz M, Aktas A (2017) Comparative transfer hydrogenation performance of homogeneous and heterogeneous ruthenium (II) catalysts derived from a Schiff base ligand. J Organomet Chem 830:188–195

    Article  CAS  Google Scholar 

  110. Jia WG, Zhang H, Zhang T, Ling S (2016) Synthesis, structures and catalytic activities of half-sandwich ruthenium complexes based on Schiff Base ligands. Inorg Chem Commun 66:15–18

    Article  CAS  Google Scholar 

  111. Jia WG, Zhang H, Zhang T, Xie D, Ling S, Sheng EH (2016) Half-sandwich ruthenium complexes with Schiff-base ligands: syntheses, characterization, and catalytic activities for the reduction of nitroarenes. Organometallics 35:503–512

    Article  CAS  Google Scholar 

  112. Jia WG, Wang ZB, Zhi XT, Han JQ, Sun Y (2017) Syntheses, characterization and catalytic activities of half-sandwich ruthenium complexes with naphthalene-based Schiff base ligands. J Coord Chem 70:848–858

    Article  CAS  Google Scholar 

  113. Lapasam A, Dkhar L, Joshi N, Poluri KM, Kollipara MR (2019) Antimicrobial selectivity of ruthenium, rhodium, and iridium half sandwich complexes containing phenyl hydrazone Schiff base ligands towards B. thuringiensis and P. aeruginosa bacteria. Inorg Chim Acta 484:255–263

    Article  CAS  Google Scholar 

  114. Pettinari R, Marchetti F, Nicola CD, Pettinari C, Galindo A, Petrelli R, Cappellacci L, Cuccioloni M, Bonfili L, Eleuteri AM, Silva MFCG, Pombeiro AJL (2018) Ligand design for N, O- or N, N-pyrazolone-based hydrazones ruthenium(II)-arene complexes and investigation of their anticancer activity. Inorg Chem 57:14123–14133

    Article  CAS  PubMed  Google Scholar 

  115. Ramesh M, Venkatachalam G (2019) Half-sandwich (η6-p-cymene) ruthenium(II) complexes bearing 5-amino-1-methyl-3-phenylpyrazole Schiff base ligands: synthesis, structure and catalytic transfer hydrogenation of ketones. J Organomet Chem 880:47–55

    Article  CAS  Google Scholar 

  116. Satheesh CE, Kumar PNS, Kumara PR, Karvembu R, Hosamani A, Nethaji M (2019) Half sandwich Ru (II) complexes containing (N, O) Schiff base ligands: catalysts for base free transfer hydrogenation of ketones. Appl Organometal Chem 33:e5111

    Article  CAS  Google Scholar 

  117. Starha P, Hosek J, Travnicek Z, Dvorak Z (2020) Cytotoxic dimeric half sandwich Ru(II), Os(II) and Ir(III) complexes containing the 4,4’-biphenyl-based bridging ligands. App Organometal Chem 34:e5785

    CAS  Google Scholar 

  118. Nandhini R, Krishnamoorthy BS, Venkatachalam G (2019) Binuclear half-sandwich ruthenium(II) Schiff base complexes: synthesis, characterization, DFT study and catalytic activity for the reduction of nitroarenes. J Organomet Chem 903:120984

    Article  CAS  Google Scholar 

  119. Kasim MSM, Sundar S, Rengan R (2018) Synthesis and structure of new binuclear ruthenium(II) arene benzyl bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front 5:585–596

    Article  Google Scholar 

  120. Ljubijankic N, Tesevic V, Grguric-Sipka S, Jadranin M, Begic S, Buljubasic L, Markotic E, Ljubijankic S (2016) Synthesis and characterization of Ru(III) complexes with thiosemicarbazide-based ligands. Glas Hem Technol Bosne Herceg 47:1–6

    CAS  Google Scholar 

  121. Mahmoud NF, Mahmoud WH, Mohamed GG (2020) Synthesis, spectral, MOE and cytotoxic studies of nano Ru (III), Pr (III) and Gd (III) metal complexes with new Schiff base ligand based on dibenzoyl methane and anthranilic acid. Appl Organomet Chem 34:e5801

    Article  CAS  Google Scholar 

  122. Zhang Z, Yang Z, Wu Y, Yuan Z, Du J, Li L (2020) Reduced amino acid Schiff base containing ruthenium(III) complexes: synthesis, characterization, DNA interaction, and in vitro cytotoxicity. J Biochem Mol Toxicol 34:e22510

    Article  CAS  PubMed  Google Scholar 

  123. Mohite SS, Patil-Deshmukh AB, Chavan SS (2020) Ru(III)-pseudohalide complexes with alkynyl functionalized salicylaldimine ligand and heterocyclic coligand: synthesis, characterization, electrochemical and luminescence properties. Inorg Chim Acta 507:119586

    Article  CAS  Google Scholar 

  124. AbouEl-Enein SA, Emam SM, Wagdy RM, Abouzayed FI (2020) Spectral and thermal investigation of novel biologically active (N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl-amino)-2-oxo-cetimidic acid) ligand and its metal complexes. J Mol Struct 1215:128230

    Article  CAS  Google Scholar 

  125. Maikoo S, Dingle LMK, Chakraborty A, Xulu B, Edkins AL, Booysen IN (2020) Synthetic, characterization and cytotoxic studies of ruthenium complexes with Schiff bases encompassing biologically relevant moieties. Polyhedron 184:114569

    Article  CAS  Google Scholar 

  126. Nagalakshmi V, Nandhini R, Venkatachalam G, Balasubramani K (2020) Synthesis and characterization of new ruthenium(III) complexes derived from fluoreneamine-based Schiff base ligands and their catalytic activity in transfer hydrogenation of ketones. J Coord Chem 73:206–216

    Article  CAS  Google Scholar 

  127. Alibrahim KA, Al-Fawzan FF, Refat MS (2019) Chemical preparation of nanostructures of Ni(II), Pd(II) and Ru(III) oxides by thermal decomposition of new metallic 4-aminoantipyrine derivatives: catalytic activity of the oxides. Russ J Gen Chem 89:2528–2533

    Article  CAS  Google Scholar 

  128. Ejidike IP, Ajibade PA (2016) Synthesis, characterization, anticancer, and antioxidant studies of Ru(III) complexes of monobasic tridentate Schiff bases. Bioinorg Chem Appl 20:16

    Google Scholar 

  129. Subbaiyana S, Ponnusamy I (2019) Biological investigations of ruthenium(III) 3-(benzothiazol-2-liminomethyl)-phenol Schiff base complexes bearing PPh3 / AsPh3 coligand. Curr Chem Lett 8:145–156

    Article  Google Scholar 

  130. Dhamodaran M, Vadivel T, Amirthaganesh K (2015) Synthesis, characterisation and antibacterial activity of ruthenium metal complexes derived from Schiff base modified chitosan. J Chem Chem Sci 5:527–533

    Google Scholar 

  131. Ejidike IP, Ajibade PA (2015) Synthesis, characterization, and in vitro antioxidant and anticancer studies of ruthenium(III) complexes of symmetric and asymmetric tetradentate Schiff bases. J Coord Chem 68:2552–2564

    Article  CAS  Google Scholar 

  132. Kirubavathy SJ, Saranya J, Sathya N, Enoch IVMV, Selvakumar PM, Chitra S (2017) Synthesis, characterization and biological evaluation of Ru(III) mercaptopyrimidine Schiff base complexes. Appl Organometal Chem 31:e3760

    Google Scholar 

  133. Ramesh M, Kumar MD, Jaccob M, Kaleeswaran D, Venkatachalam G (2017) Ru(III) mediated C–H bond activation of N-(naphthyl)salicylaldimine and related Schiff base ligands: synthesis, structure, DFT study and catalytic activity. Inorg Chem Comm 85:26–31

    Article  CAS  Google Scholar 

  134. Tang LH, Wu F, Lin H, Jia AQ, Zhang QF (2018) Synthesis, structure and catalytic alcohol oxidation by ruthenium(III) supported by Schiff base and triphenylphosphine ligands. Inorg Chim Acta 477:212–218

    Article  CAS  Google Scholar 

  135. Al-Saif FA, Alibrahim KA, Alosaimi EH, Assirey E, El-Shahawi MS, Refat MS (2018) Synthesis, spectroscopic and electrochemical characterizations of new Schiff base chelator towards Ru3+, Pt4+ and Ir3+ metal ions. J Mol Liq 266:242–251

    Article  CAS  Google Scholar 

  136. El-Samanody ESA, AbouEl-Enein SA, Emara EM (2018) Molecular modeling, spectral investigation and thermal studies of the new asymmetric Schiff base ligand; (E)-N’-(1-(4-((E)-2-hydroxybenzylideneamino)phenyl)ethylidene)morpholine-4-carbothiohydrazide and its metal complexes: evaluation of their antibacterial and anti-molluscicidal activity. Appl Organometal Chem 32:e4262

    Article  CAS  Google Scholar 

  137. Mehta JV, Gajera SB, Patel MN (2017) Biological applications of pyrazoline-based half-sandwich ruthenium(III) coordination compounds. J Biomol Struct Dyn 35:1599–1607

    Article  CAS  PubMed  Google Scholar 

  138. Simovic RA, Masnikosa R, Bratsos I, Alessio E (2019) Chemistry and reactivity of ruthenium(II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coord Chem Rev 398:113011

    Article  CAS  Google Scholar 

  139. Brabec V, Kasparkova J (2018) Ruthenium coordination compounds of biological and biomedical significance. DNA Bind Agents Coord Chem Rev 376:75–94

    Article  CAS  Google Scholar 

  140. Mohapatra RK, Das PK, Pradhan MK, Maihub AA, El-ajaily MM (2018) Biological aspects of Schiff base-metal complexes derived from benzaldehydes: an overview. J Iran Chem Soc 2018:1–35

    CAS  Google Scholar 

Download references

Acknowledgements

NIT Silchar is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjit Barman.

Ethics declarations

Conflict of interest

There authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Barman, P. Recent Advances in Schiff Base Ruthenium Metal Complexes: Synthesis and Applications. Top Curr Chem (Z) 379, 29 (2021). https://doi.org/10.1007/s41061-021-00342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00342-w

Keywords

Navigation