Skip to main content
Log in

First-principles study of energetic complexes (II): (5-cyanotetrazolato-N2) pentaammine cobalt (III) perchlorate (CP) and Ni, Fe and Zn analogues

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

First-principles methods using the TPSS density functional level of theory with the basis set 6-31G** were applied to study (5-cyanotetrazolato-N2) pentaammine cobalt (III) perchlorate (CP) and Ni, Fe and Zn analogues in the gas phase. The optimized lowest-energy geometry of CP was calculated from reported experimental structural data using the TPSS method. The calculated values are in good agreement with those measured by X-ray diffraction. Ni, Fe and Zn analogues were constructed and calculated on the same basis. NBO results showed that the metal-ligand interactions have covalent character. Donor-acceptor analyses predicted that the delocalization energy E2 decreases from Co to Zn, so the covalent nature of the complexes increases in the order Co>Fe>Ni>Zn. In addition, HOMO-LUMO composition was investigated to determine the stability of the title compounds.

First-principles methods employing the TPSS density functional level of theory with the basis sets 6-31G**, has been applied to study the (5-cyanotetrazolato-N2) pentaammine cobalt (III) perchlorate (CP) and its transition metal (Ni/Fe/ Zn) perchlorate analogues in the gas phase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lieberman ML (1985) Ind Eng Chem Prod Res Dev 24:436–440

    Article  CAS  Google Scholar 

  2. Searcy JQ, Shanahan KL (1978) Thermal decomposition of the new explosive 2-(5-cyanotetrazolato)- pentaammine cobalt (III) perchlorate. Sandia Labs, Albuquerque, NM

  3. Lieberman ML, Fronabarger JW (1980) In: 7. International pyrotechnics seminar, USA, vol 14, p 322

  4. Fronabarger JW, Fleming W, Lieberman ML (1981) Performance of chemical analogs of the explosive CP. Sandia National Labs, Albuquerque, NM

  5. Massis TM, Morenus PK, Huskisson DH, Merrill RM (1982) J Hazard Mater 5:309–323

    Article  CAS  Google Scholar 

  6. Graeber EJ, Morosln B (1983) Acta Crystallogr Sect C Cryst Struct Commun C39:567–570

    Article  CAS  Google Scholar 

  7. Pickard JM (1984) J Hazard Mater 9:121–131

    Article  CAS  Google Scholar 

  8. Blachowski MTJ, Branch C, Center NSW, Burchett MJ, Ostrowski PP(2002) In 38th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit Indianapolis, IN, vol 23, p 5141

  9. Burnham AK, Weese RK, Andrzejewski WJ (2004) Kinetics of HMX and CP Decomposition and their Extrapolation for Lifetime Assessment Lawrence. Livermore National Lab, Livermore, CA

  10. Weese RK, Burnham AK (2006) Propellants Explos Pyrotech 31:239–245

    Article  CAS  Google Scholar 

  11. Talawar MB, Agrawal AP, Asthana SN (2005) J Hazard Mater 120:25–35

    Article  CAS  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, iashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D. 01. Gaussian Inc, Wallingford, CT

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven TJ, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, iashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2006) Guassian development version, Revision F.02 edn, Gaussian Inc,Wallingford, CT

  14. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401–146404

    Article  Google Scholar 

  15. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  16. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  17. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  18. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  19. Petrov KT, Veszprémi T (2009) Int J Quantum Chem 109:2526–2541

    Article  CAS  Google Scholar 

  20. Tayyari SF, Moosavi-Tekyeh Z, Soltanpour M, Berenji AR, Sammelson RE (2008) J Mol Struct 892:32–38

    Article  CAS  Google Scholar 

  21. Ebrahimi A, Deyhimi F, Roohi H (2003) J Mol Struct (THEOCHEM) 626:223–229

    Article  CAS  Google Scholar 

  22. Sadjadi MS, Sadeghi B, Zare K (2007) J Mol Struct (THEOCHEM) 817:27–33

    Article  CAS  Google Scholar 

  23. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  24. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  25. Belik AV, Potemkin VA, Zefirov NS (1989) Dokl Akad Nauk 308:882–886

    CAS  Google Scholar 

  26. Zhang H, Xu LJ, Zhang FC, Cheng XL, An GW (2008) Int J Quantum Chem 109:720–725

    Article  Google Scholar 

  27. Zhu W, Shi C, Xiao H (2009) J Mol Struct (THEOCHEM) 910:148–153

    Article  CAS  Google Scholar 

  28. Zhu W, Xiao H (2009) J Phys Chem B 113:10315–10321

    Article  CAS  Google Scholar 

  29. Zhang H, Cheung F, Zhao F, Cheng XL (2009) Int J Quantum Chem 109:1547–1552

    Article  CAS  Google Scholar 

  30. Huang H, Zhang T, Zhang J, Wang L (2009) Chem Phys Lett 487:200–203

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF: 10776002, NSFC-RFBR: 20911120033), the project of State Key Laboratory of Science and Technology (No. QNKT11-06, YBKT10-03), and the Program for New Century Excellent Talents in University (NCET-09-0051).

Our thanks are due to Professor Gustavo E. Scuseria for providing the development version of Gaussian program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Guo Zhang or Tong-Lai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, J., Zhang, JG., Zhang, TL. et al. First-principles study of energetic complexes (II): (5-cyanotetrazolato-N2) pentaammine cobalt (III) perchlorate (CP) and Ni, Fe and Zn analogues. J Mol Model 18, 2855–2860 (2012). https://doi.org/10.1007/s00894-011-1301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1301-3

Keywords

Navigation