Skip to main content
Log in

Theoretical and experimental studies on three new coordination complexes of Co(II), Ni(II), and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three mononuclear coordination complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 2,4-dichloro-6-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol ligand (H 2 L) obtained by simple condensation reaction of 3,5-dichloro-2-hydroxybenzaldehyde and 2-amino-4-chlorobenzenethiol and characterized by elemental analysis, spectral (FT-IR, electronic, and 1H-NMR), molar conductance, thermal, SEM, PXRD, and fluorescence studies. The PXRD analysis and SEM-EDX micrographs show the crystalline nature of complexes. The domain size and the lattice strain of synthesized compounds have been determined according to Williamson–Hall plot. TG of the synthesized complexes illustrates the general decomposition pattern of the complexes. The ligand exhibits an interesting fluorescence property which is suppressed after complex formation. The Co(II) complex adopted a distorted octahedral configuration while Ni(II) and Cu(II) complexes showed square planar geometry around metal center. The geometry optimization, HOMO-LUMO, molecular electrostatic potential map (MEP), and spin density of synthesized compounds have been performed by density functional theory (DFT) method using B3LYP/6-31G and B3LYP/LANL2DZ as basis set.

Three new coordination complexes of Co(II), Ni(II) and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marusak RA , Doan K, Cummings SD (2007) Integrated approach to coordination chemistry an inorganic laboratory guide. Wiley, New York, pp 22–28

  2. Vigato PA, Tamburini S (2004) Coord Chem Rev 248:1717–2128

    Article  CAS  Google Scholar 

  3. Vigato PA, Tamburini S (2008) Coord Chem Rev 252:1871–1995

    Article  CAS  Google Scholar 

  4. Vigato PA, Peruzzo V, Tamburini S (2012) Coord Chem Rev 256:953–1114

    Article  CAS  Google Scholar 

  5. Nelson W, Wallis, Sue C (1974) Cummings Inorg Chem 13:991–994

    Article  Google Scholar 

  6. Cincic D, Kaitner B (2011) Cryst Eng Comm 13:4351–4357

    Article  CAS  Google Scholar 

  7. Mishra AP, Jain R (2013) Proc Natl Acad Sci A Phys Sci 83(3):213–223

    Article  CAS  Google Scholar 

  8. Uddin AJ, Räisänen MT, Martin N, Markku L, Timo R (2012) Inorg Chim Acta 384:275–280

    Article  Google Scholar 

  9. Bhardwaj VK, Hundal MS, Corbella M, Gomez V, Hundal G (2012) Polyhedron 38:224–234

    Article  CAS  Google Scholar 

  10. Rosette M, Roat-Malone (2007) Bioinorganic chemistry a short course, second edn. Wiley, New York, pp 1–28

  11. Dong X, Li Y, Li Z, Cui Y, Zhu H (2012) J Inorg Biochem 108:22–29

    Article  CAS  Google Scholar 

  12. Chen W et al (2010) Euro J Med Chem 45:4473–4478

    Article  CAS  Google Scholar 

  13. Pelosi G et al (2010) J Med Chem 53:8765–8769

    Article  CAS  Google Scholar 

  14. Vanco J et al (2008) J Inorg Biochem 102(4):595–605

    Article  CAS  Google Scholar 

  15. Katherine H (2006) Thompson and Chris Orvig. Dalton Trans 761–764. doi:10.1039/b513476e

  16. Shukla S, Mishra AP (2014) Arabian J Chem doi:10.1016/j.arabjc.2014.08.020

  17. Sarah B, Creaven B (2010) Dalton Trans 39:10854–10865

    Article  Google Scholar 

  18. Pandey R et al (2011) Inorg Chem 50:3189–3197

    Article  CAS  Google Scholar 

  19. Cozzi PG et al (2003) New J Chem 27:692–697

    Article  CAS  Google Scholar 

  20. Strianese M, Milione S, Bertolasi V, Pellecchia C (2013) Inorg Chem 52:11778–11786

    Article  CAS  Google Scholar 

  21. Trujillo A et al (2010) Inorg Chem 49:2750–2764

    Article  CAS  Google Scholar 

  22. Liu C-G, Guan X-H, Su Z-M (2011) J Phys Chem C 115:6024–6032

    Article  CAS  Google Scholar 

  23. Dehno A, Nikookar KM, Fejfarova K, Dusek M (2014) J Mol Str 1071:6–10

    Article  Google Scholar 

  24. Gutiérrez A, Felisa Perpiñán M, Sánchez AE, Carmen Torralba M, Rosario Torres M (2012) Polyhedron 44:165–173

    Article  Google Scholar 

  25. Banerjee S et al (2011) Dalton Trans 40:1652–1661

    Article  CAS  Google Scholar 

  26. Nasr-Esfahani M, Zendehdel M, Nia NY, Babadi BJMK (2014) RSC Adv 4:15961–15967

    Article  CAS  Google Scholar 

  27. Zhang J et al (2012) J Mater Chem 22:16448–16457

    Article  CAS  Google Scholar 

  28. Biswas S et al (2014) RSC Adv 4:34248–34256

    Article  CAS  Google Scholar 

  29. Gupta KC, Kumar Sutar A (2008) Coord Chem Rev 252:1420–1450

    Article  CAS  Google Scholar 

  30. Cozzi PG (2004) Chem Soc Rev 33:410–421

    Article  CAS  Google Scholar 

  31. Su H, Li Z, Huo Q, Guan J, Kan Q (2014) RSC Adv 4:9990–9996

    Article  CAS  Google Scholar 

  32. Adhikary J et al (2013) Inorg Chem 52:13442–13452

    Article  CAS  Google Scholar 

  33. Das C et al (2014) Inorg Chem 53:11426–11437

    Article  CAS  Google Scholar 

  34. Khalaji AD, Chermahini AN, Fejfarova K, Dusek M (2010) Struct Chem 21:153–157

    Article  CAS  Google Scholar 

  35. Takaichi J et al (2014) Inorg Chem 53:6159–6169

    Article  CAS  Google Scholar 

  36. Lutz OMD et al (2013) J Phys Chem Lett 4:1502–1506

    Article  CAS  Google Scholar 

  37. Antunes JA et al (2012) J Mol Str 1013:126–133

    Article  CAS  Google Scholar 

  38. Jafarian M et al (2012) J Phys Chem C 116:18518–18532

    Article  CAS  Google Scholar 

  39. Upadhyay KK, Kumar A, Upadhyay S, Mishra PC (2008) J Mol Str 873:5–16

    Article  CAS  Google Scholar 

  40. Bonhommeau S et al (2012) J Phys Chem C 116:11251–11255

    Article  CAS  Google Scholar 

  41. Di Bella S (2001) Chem Soc Rev 30:355–366

    Article  Google Scholar 

  42. Krishnamoorthy P, Sathyadevi P, Muthiah PT, Dharmaraj N (2012) RSC Adv 2:12190–12203

    Article  CAS  Google Scholar 

  43. Barone G et al (2013) Coord Chem Rev 257:2848–2862

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc, Wallingford

  45. G A Zhurko; Chemcraft version 1.7(build375) http://www.chemcraftprog.com

  46. Arish D, Sivasankaran M (2010) Nair J Mol Str 983:112–121

    Article  CAS  Google Scholar 

  47. Refat MS, El-Sayed MY, Adam AMA (2013) J Mol Str 1038:62–72

    Article  CAS  Google Scholar 

  48. Sebastian M et al (2010) Polyhedron 29:3014–3020

    Article  CAS  Google Scholar 

  49. Cui Y, Dong X, Li Y, Li Z, Chen W (2013) Euro J Med Chem 58:323–331

    Article  Google Scholar 

  50. Kazuo N (2009) Infrared and Raman spectra of inorganic and coordination compounds part B: applications in coordination, organometallic, and bioinorganic chemistry, sixthth edn. Wiley, Hoboken, pp 210–222

  51. Tyagi P, Chandra S, Saraswat BS (2015) Spectrochim Acta A 134:200–209

    Article  CAS  Google Scholar 

  52. Shebl M, Khalil SME, Ahmed SA, Medien HAA (2010) J Mol Str 980:39–50

    Article  CAS  Google Scholar 

  53. Singha BK, Prakasha A, Rajourb HK, Bhojakc N, Adhikari D (2010) Spectrochim Acta A 76:376–383

    Article  Google Scholar 

  54. Kavitha P, Saritha M, Laxma Reddy K (2013) Spectrochim Acta A 102:159–168

    Article  CAS  Google Scholar 

  55. Soliman AA, Linert W (1999) Thermochim Acta 338:67–75

    Article  CAS  Google Scholar 

  56. Ourari A et al (2014) Polyhedron 67:59–64

    Article  CAS  Google Scholar 

  57. Sundar A, Prabhu M, Indra Gandhi N, Marappan M, Rajagopal G (2014) Spectrochim Acta A 129:509–518

    Article  CAS  Google Scholar 

  58. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules, VCH, Weinheim, pp 63–135

  59. Raman N, Mahalakshmi R, Arun T, Packianathan S, Rajkumar R (2014) J Photochem Photobiol B: Biol 138:211–222

    Article  CAS  Google Scholar 

  60. Taha A, Farag AAM, Ammarb AH, Ahmed HM (2014) Spectrochim Acta A 130:494–501

    Article  CAS  Google Scholar 

  61. Scherrer P (1918) Nachr Ges Wiss Göttinger 2:98–100

    Google Scholar 

  62. Barnes P, Jacques S, Vicker M (2015) Chapter 15: the concept of peak sShape. School of Crystallography, Birkbeck College, University of London. http://pd.chem.ucl.ac.uk/pdnn/relnotes/rel15.htm

  63. Venkateswarlu K, ChandraBose A, Rameshbabu N (2010) Physica B 405:4256–4261. doi:10.1016/j.physb.2010.07.020

    Article  CAS  Google Scholar 

  64. Ghosh P, Kar A, Patra A (2010) J Appl Phys 108:113506

    Article  Google Scholar 

  65. Martin JD (2008) X Powder a software package for powder x-ray diffraction analysis user guide ver 2004.04.82. http://www.xpowder.com/download/xpowder.pdf

  66. Balzar D (1993) J Res Natl Inst Stand Technol 98:321–353

    Article  CAS  Google Scholar 

  67. Sen Gupta SP, Chatterjee P (2002) PINSA 68(3):267–291

    CAS  Google Scholar 

  68. Ghosh P, Patra A (2007) J Phys Chem C 111:7004–7010

    Article  CAS  Google Scholar 

  69. Guha A et al (2013) J Mol Str 1042:104–111

    Article  CAS  Google Scholar 

  70. Islam SM et al (2011) J Mol Catal A 336:106–114

    Article  CAS  Google Scholar 

  71. Abdel-Nasser MA (2014) Alaghaz J Mol Str 1072:103–113

    Article  Google Scholar 

  72. Jain RK, Mishra AP, Gupta P (2012) J Therm Anal Calorim 110(2):529–534

    Article  CAS  Google Scholar 

  73. Shukla S, Mishra AP (2012) J Therm Anal Calorim 107:111–117

    Article  CAS  Google Scholar 

  74. Alaghaz A-NMA, Ammara YA, Bayoumi HA, Aldhlmani SA (2014) J Mol Str 1074:359–375

    Article  CAS  Google Scholar 

  75. Cavalheiro ÉTG et al (2001) Thermochim Acta 370:129–133

    Article  CAS  Google Scholar 

  76. Dilek D, Doğan F, Bilici A, Kaya I (2011) Thermochim Acta 518:72–81

    Article  CAS  Google Scholar 

  77. Zhou L et al (2012) Anal Chim Acta 735:96–106

    Article  CAS  Google Scholar 

  78. Barwiolek M, Szlyk E, Muzioł TM, Lis T (2011) Dalton Trans 40:11012–11022

    Article  CAS  Google Scholar 

  79. Singh K, Kumar Y, Puri P, Kumar M, Sharma C (2012) Eur J Med Chem 52:313–321

    Article  CAS  Google Scholar 

  80. Patil SA, Naik VH, Kulkarni AD, Badami PS (2010) Spectrochim Acta A 75:347–354

    Article  Google Scholar 

  81. Hameed SA, Alrouby SK, Hilal R (2013) J Mol Model 19:559–569

    Article  Google Scholar 

  82. Tanaka H, Agar AA, Buyukgungor O (2012) Spectrochim Acta A 87:15–24

    Article  Google Scholar 

  83. Gupta SK, Hitchcock PB, Argal GS (2008) Inorg Chim Acta 361:2139–2146

    Article  CAS  Google Scholar 

  84. Govindarasu K, Kavitha E (2014) Spectrochim Acta A 133:799–810

    Article  CAS  Google Scholar 

  85. Kianfar AH, Ramazani S, Fath RH, Roushani M (2013) Spectrochim Acta A 105:374–382

    Article  CAS  Google Scholar 

  86. Ebrahimipour SY, Abaszadeh M, Castro J, Seifi M (2014) Polyhedron 79:138–150

    Article  CAS  Google Scholar 

  87. Ghosh M, Weyhermüller T, Wieghardt K (2010) Dalton Trans 39:1996–2007

    Article  CAS  Google Scholar 

  88. Yousef TA, El-Gammal OA, Ahmed SF, Abu El-Reash GM (2015) Spectrochim Acta A 135:690–703

    Article  CAS  Google Scholar 

  89. Elamurugu Porchelvi E, Muthu S (2015) Spectrochim Acta A 134:453–464

    Article  Google Scholar 

  90. Anbuselvan C, Jayabharathi J, Thanikachalam V, Tamilselvi G (2012) Spectrochim Acta A 97:125–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BSK specially thanks UGC, New Delhi, India, for financial assistance. He is thankful to the Head, Department of Chemistry, Dr. H. S. Gour University, Sagar India, for departmental facilities. He highly acknowledges Mr. Sandeep Tiwari, Department of Physical Science, M.G.C.G. Vishwvidyalaya, Chitrakoot, Satna (M.P.), India and Ms. Anjali Tiwari, Department of Chemistry, Dr. H. S. Gour University, Sagar India for their valuable guidance and motivational support time to time. He is also thankful to Sophisticated Instrumentation Center, Dr. H. S. Gour University, Sagar for making available Powder X-ray Diffraction, thermal analysis and SEM-EDAX facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusmariya, B.S., Mishra, A.P. Theoretical and experimental studies on three new coordination complexes of Co(II), Ni(II), and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand. J Mol Model 21, 278 (2015). https://doi.org/10.1007/s00894-015-2805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2805-z

Keywords

Navigation