Skip to main content
Log in

How Does the Hemilabile Group in Ruthenium-Cp* Picolyl-NHC Complexes Affect the Mechanism of Transfer Hydrogenation Reaction? A DFT Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The ruthenium-Cp* picolyl-NHC complexes catalyzed transfer hydrogenation reaction has been investigated with the aid of density functional theory calculations at the B3LYP level of theory. Two kinds of “hydridic route” (inner sphere mechanism) and one “direct hydrogen transfer route” (Meerwein–Ponndorf–Verley mechanism) have been examined. From the results we conclude that the stepwise inner sphere mechanism would be favored from the energetic point of view. The hemilability of the picolyl group plays an important role in determining which mechanism the transfer hydrogenation reaction should be followed. And the effect of agostic interaction has also been discussed.

Graphical Abstract

The ruthenium-Cp* picolyl-NHC complexes catalyzed transfer hydrogenation reaction has been investigated with the aid of density functional theory calculations at the B3LYP level of theory. Two kinds of “hydridic route” (inner sphere mechanism) and one “direct hydrogen transfer route” (Meerwein–Ponndorf–Verley mechanism) have been examined. From the results we conclude that the stepwise inner sphere mechanism would be favored from the energetic point of view. The hemilability of the picolyl group plays an important role in determining which mechanism the transfer hydrogenation reaction should be followed. And the effect of agostic interaction has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bäckvall J-E (2002) J Organomet Chem 652:105

    Article  Google Scholar 

  2. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201

    Article  CAS  Google Scholar 

  3. Gladiali S, Alberico E (2006) Chem Soc Rev 35:226

    Article  CAS  Google Scholar 

  4. Samec JSM, Bäckvall J-E, Andersson PG, Brandt P (2006) Chem Soc Rev 35:237

    Article  CAS  Google Scholar 

  5. Comas-Vives A, Ujaque G, Lledós A (2007) Organometallics 26:4135

    Article  CAS  Google Scholar 

  6. Handgraaf J-W, Reek JNH, Meijer EJ (2003) Organometallics 22:3150

    Article  CAS  Google Scholar 

  7. de Graauw CF, Peters JA, van Berkkum H, Huskens J (1994) Synthesis 1994:1007

    Article  Google Scholar 

  8. Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R (1996) J Am Chem Soc 118:2521

    Article  CAS  Google Scholar 

  9. Noyori R, Ohkuma T (2001) Angew Chem 113:40

    Article  Google Scholar 

  10. Sandoval CA, Ohkuma T, Muñiz K, Noyori R (2003) J Am Chem Soc 125:13490

    Article  CAS  Google Scholar 

  11. Yamakawa M, Ito H, Noyori R (2000) J Am Chem Soc 122:1466

    Article  CAS  Google Scholar 

  12. Casey CP, Johnson JB, Singer SW, Cui Q (2005) J Am Chem Soc 127:3100

    Article  CAS  Google Scholar 

  13. Privalov T, Samec JSM, Bäckvall J-E (2007) Organometallics 26:2840

    Article  CAS  Google Scholar 

  14. Bacchi A, Balordi M, Cammi R, Elviri L, Pelizzi C, Picchioni F, Verdolino V, Goubitz K, Peschar R, Pelagatti P (2008) Eur J Inorg Chem 2008:4462

    Article  Google Scholar 

  15. Comas-Vives A, Ujaque G, Lledós A (2009) J Mol Struc (THEOCHEM) 903:123

    Article  CAS  Google Scholar 

  16. Bosson J, Poater A, Cavallo L, Nolan SP (2010) J Am Chem Soc 132:13146

    Article  CAS  Google Scholar 

  17. Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Chem Rev 100:39

    Article  CAS  Google Scholar 

  18. Díez-González S, Nolan SP (2007) Coord Chem Rev 251:874

    Article  Google Scholar 

  19. Mata JA, Poyatos M, Peris E (2007) Coord Chem Rev 251:841

    Article  CAS  Google Scholar 

  20. Kühl O (2007) Chem Soc Rev 36:592

    Article  Google Scholar 

  21. Torres O, Martín M, Sola E (2009) Organometallics 28:863

    Article  CAS  Google Scholar 

  22. Jiménez MV, Fernández-Tornos J, Pérez-Torrente JJ, Modrego FJ, Winterle S, Cunchillos C, Lahoz FJ, Oro LA (2011) Organometallics 30:5493

    Article  Google Scholar 

  23. Bonnet LG, Douthwaite RE, Hodgson R, Houghton J, Kariuki BM, Simonovic S (2004) Dalton Trans 21:3528

    Article  Google Scholar 

  24. Jiménez MV, Pérez-Torrente JJ, Bartolomé MI, Gierz V, Lahoz FJ, Oro LA (2008) Organometallics 27:224

    Article  Google Scholar 

  25. Gnanamgari D, Sauer ELO, Schley ND, Butler C, Incarvito CD, Crabtree RH (2009) Organometallics 28:321

    Article  CAS  Google Scholar 

  26. O WWN, Lough AJ, Morris RH (2009) Organometallics 28:6755

    Article  CAS  Google Scholar 

  27. O WWN, Lough AJ, Morris RH (2010) Chem Commun 46:8240

    Article  CAS  Google Scholar 

  28. Ohara H, O WWN, Lough AJ, Morris RH (2012) Dalton Trans 41:8797

    Article  CAS  Google Scholar 

  29. DePasquale J, Kumar M, Zeller M, Papish ET (2013) Organometallics 32:966

    Article  CAS  Google Scholar 

  30. Wang X, Liu S, Weng L-H, Jin G-X (2007) Chem Eur J 13:188

    Article  CAS  Google Scholar 

  31. da Costa AP, Mata JA, Royo B, Peris E (2010) Organometallics 29:1832

    Article  Google Scholar 

  32. Horn S, Albrecht M (2011) Chem Commun 47:8802

    Article  CAS  Google Scholar 

  33. Horn S, Gandolfi C, Albrecht M (2011) Eur J Inorg Chem 2011:2863

    Article  CAS  Google Scholar 

  34. Fernández FE, Puerta MC, Valerga P (2011) Organometallics 30:5793

    Article  Google Scholar 

  35. Frisch MJ et al (2009) Gaussian 09, Revision A.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  36. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Becke AD (1997) J Chem Phys 107:8554

    Article  CAS  Google Scholar 

  40. Schmider HL, Becke AD (1998) J Chem Phys 108:9624

    Article  CAS  Google Scholar 

  41. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  42. Hay PJ, Wadt WR (1985) J Chem Phys 82:284

    Article  Google Scholar 

  43. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  44. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  45. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  46. Tomasi J, Persico M (1994) Chem Rev 94:2027

    Article  CAS  Google Scholar 

  47. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  48. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  49. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  50. Lu T, Chen F-W (2012) J Comput Chem 33:580

    Article  Google Scholar 

  51. Legault CY (2009) CYLview, 1.0b. Université de Sherbrooke, Sherbrooke

    Google Scholar 

  52. Brookhart M, Green MLH (1983) J Organomet Chem 250:395

    Article  CAS  Google Scholar 

  53. Brookhart M, Green MLH, Parkin G (2007) Proc Natl Acad Sci USA 104:6908

    Article  CAS  Google Scholar 

  54. Clot E, Eisenstein O (2004) Struct Bonding 113:1

    Article  CAS  Google Scholar 

  55. Scherer W, McGrady GS (2004) Angew Chem Int Ed 43:1782

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was granted by the Tianjin Natural Science Foundation (No. 14JCYBJC20100 X.X.), the MOE Innovation Team (No. IRT13022) of China, and the Natural Science Foundation of China (Project 21421001). The work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A). We thank to Professor Zunsheng Cai for his useful discussions and polishing of our manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenfeng Shang or Xiufang Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RTF 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Shang, Z. & Xu, X. How Does the Hemilabile Group in Ruthenium-Cp* Picolyl-NHC Complexes Affect the Mechanism of Transfer Hydrogenation Reaction? A DFT Study. Catal Lett 145, 1331–1343 (2015). https://doi.org/10.1007/s10562-015-1524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1524-5

Keywords

Navigation