Skip to main content
Log in

Density functional theory studies on the inclusion complexes of cyclic decapeptide with 1-phenyl-1-propanol enantiomers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cyclic peptides are exciting novel hosts for chiral and molecular recognition. In this work, the inclusion complexes of cyclic decapeptide (CDP) with the 1-phenyl-1-propanol enantiomers (E-PP) are firstly studied using the density functional theory (DFT) B3LYP method. Our calculated results indicated that S(-)-1-phenyl-1-propanol (S-PP) could form a more stable inclusion complex with CDP than that of R(+)-1-phenyl-1-propanol (R-PP). The obvious differences in binding energy and thermodynamics data suggest that the cyclic decapeptide could differentiate the two enantiomers. Furthermore, molecular dynamics simulation results have supported the conclusions obtained by DFT. The current investigation shows that cyclic peptide is a desirable host molecule for chiral and molecular recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gellman SH (1997) Chem Rev 97:1231–1232

    Article  CAS  Google Scholar 

  2. Breslow R, Dong SD (1998) Chem Rev 98:1997–2012

    Article  CAS  Google Scholar 

  3. Lee WY, Park CH, Kim S (1993) J Am Chem Soc 115:1184–1185

    Article  CAS  Google Scholar 

  4. Song LX, Wang HM, Yang Y (2007) Acta Chim Sinica 65:1593–1599

    CAS  Google Scholar 

  5. De Sousa FB, Denadai AML, Lula IS, Lopes JF, Dos Santos HF, De Almeida WB, Sinisterra RD (2008) Int J Pharm 353:160–169

    Article  Google Scholar 

  6. Khedkar JK, Gobre W, Pinjari RV, Gejji SP (2010) J Phys Chem A 114:7725–7732

    Article  CAS  Google Scholar 

  7. Maheshwari A, Sharma D (2010) J Incl Phenom Macro 68:453–459

    Article  CAS  Google Scholar 

  8. Jug M, Mennini N, Melani F, Maestrelli F, Mura P (2010) Chem Phys Lett 500:347–354

    Article  CAS  Google Scholar 

  9. Wen XH, Liu ZY, Zhu TQ (2005) Chem Phys Lett 405:114–117

    Article  CAS  Google Scholar 

  10. Zoppi A, Quevedo MA, Delrivo A, Longhi MR (2010) J Pharm Sci 99:3166–3176

    CAS  Google Scholar 

  11. Dos Santos HF, Duarte HA, Sinisterra RD, De Melo Mattos SV, De Oliveira LFC, De Almeida WB (2000) Chem Phys Lett 319:569–575

    Article  Google Scholar 

  12. Snor W, Liedl E, Weiss Greiler P, Virnstein H, Wolschann P (2009) Int J Pharm 381:146–152

    Article  CAS  Google Scholar 

  13. Barbiric DJ, Castro EA, de Rossi RH (2000) J Mol Struct THEOCHEM 532:171–181

    Article  CAS  Google Scholar 

  14. Seridi L, Boufelfel A (2011) J Mol Liq 158:151–158

    Article  CAS  Google Scholar 

  15. Chankvetadze B (1997) J Chromatogr A 792:269–295

    Article  CAS  Google Scholar 

  16. Fanali S (2000) J Chromatogr A 875:89–122

    Article  CAS  Google Scholar 

  17. Armstrong DW, Nair UB (1997) Electrophoresis 18:2331–2342

    Article  CAS  Google Scholar 

  18. Ward TJ, Oswald TM (1997) J Chromatogr A 792:309–325

    Article  CAS  Google Scholar 

  19. Haginaka J (2000) J Chromatogr A 875:235–254

    Article  CAS  Google Scholar 

  20. Otsuka K, Terabe S (2000) J Chromatogr A 875:163–178

    Article  CAS  Google Scholar 

  21. Castillo N, Boyd RJ (2005) Chem Phys Lett 416:70–74

    Article  CAS  Google Scholar 

  22. Kim H, Jeong K, Lee S, Jung S (2002) J Comput Aided Mol Des 16:601–610

    Article  CAS  Google Scholar 

  23. Stella VJ, Rao VM, Zannou EA, Zia V (1999) Adv Drug Deliv Rev 36:3–16

    Article  CAS  Google Scholar 

  24. Schneiderman E, Stalcup AM (2000) J Chromatogr B 745:83–102

    Article  CAS  Google Scholar 

  25. Coleman AW (1998) Kluwer Academic Publishers, p 103

  26. Kobayashi J, Tsuda M, Nakamura T, Mikami Y, Shigemori H (1993) Tetrahedron 49:2391–2402

    Article  CAS  Google Scholar 

  27. Gulavita NK, Gunasekera SP, Pomponi SA, Robinson EV (1992) J Org Chem 57:1767–1772

    Article  CAS  Google Scholar 

  28. Ferrante F, La Manna G (2007) J Comput Chem 28:2085–2090

    Article  CAS  Google Scholar 

  29. Lewis JP, Pawley NH, Sankey OF (1997) J Phys Chem B 101:10576–10583

    Article  CAS  Google Scholar 

  30. Maier NM, Schefzick S, Lombardo GM, Feliz M, Rissanen K, Lindner W, Lipkowitz KB (2002) J Am Chem Soc 124:8611–8629

    Article  CAS  Google Scholar 

  31. Kim KS, Cui C, Cho SJ (1998) J Phys Chem B 102:461–463

    Article  CAS  Google Scholar 

  32. Zhu YY, Tang MS, Shi XY, Zhao YF (2007) Int J Quantum Chem 107:745–753

    Article  CAS  Google Scholar 

  33. Teranishi M, Okamoto H, Takeda K, Nomura K, Nakano A, Kalia RK, Vashishta P, Shimojo F (2009) J Phys Chem B 113:1473–1484

    Article  CAS  Google Scholar 

  34. Chen GJ, Su S, Liu RZ (2002) J Phys Chem B 106:1570–1575

    Article  CAS  Google Scholar 

  35. Tan HW, Qu WW, Chen GJ, Liu RZ (2003) Chem Phys Lett 369:556–562

    Article  CAS  Google Scholar 

  36. Khattabi S, Cherrak DE, Mihlbachler K, Guiochon G (2000) J Chromatogr A 893:307–319

    Article  CAS  Google Scholar 

  37. Okamoto H, Nakanishi T, Nagai Y, Kasahara M, Takeda K (2003) J Am Chem Soc 125:2756–2769

    Article  CAS  Google Scholar 

  38. Yan CL, Xiu ZL, Li XH, Hao C (2007) J Mol Graph Model 26:420–428

    Article  CAS  Google Scholar 

  39. Liu L, Guo QX (2004) J Incl Phenom Macrocycl Chem 50:95–103

    CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Ohashi M, Kasatani K, Shinohara H, Sato H (1990) J Am Chem Soc 112:5824–5830

    Article  CAS  Google Scholar 

  43. Glendening ED, Reed AE, Carpenter JE, Weinhold F, NBO Version 03.01, included in the GAUSSIAN 03 package of programs

  44. Zhu YY, Chen ZF, Guo ZJ, Wang Y, Chen GG (2009) J Mol Model 15:469–479

    Article  CAS  Google Scholar 

  45. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, HadaM EM, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneM Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, ZakrzewskiVG DS, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford, CT

    Google Scholar 

  47. Rekharsky MV, Inoue YI (1998) Chem Rev 98:1875–1917

    Article  CAS  Google Scholar 

  48. Starikov EB, Saenger W, Steiner Th (1998) Carbohydr Res 307:343–346

    Article  CAS  Google Scholar 

  49. Uccello Barretta G, Balzano F, Sicoli G, Paolino D, Guccione S (2004) Bioorg Med Chem 12:447–458

    Article  CAS  Google Scholar 

  50. Desiraju GR (1996) Chem Res 29:441–449

    Article  CAS  Google Scholar 

  51. Steiner T (1997) Chem Commun 727-734

  52. Yu YM, Christophe C, Cai WS, Shao XG (2006) J Phys Chem B 110:6372–6378

    Article  CAS  Google Scholar 

  53. Cai WS, Sun TT, Liu P, Christophe C, Shao XG (2009) J Phys Chem B 113:7836–7843

    Article  CAS  Google Scholar 

  54. Morris GM, Goodse DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  55. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  56. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  57. Lee MC, Duan Y (2004) Proteins 55:620–634

    Article  CAS  Google Scholar 

  58. Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  59. Rehbein J, Hiersemann M (2009) J Org Chem 74:4336–4342

    Article  CAS  Google Scholar 

  60. Peles DN, Thoburn JD (2008) J Org Chem 73:3135–3144

    Article  CAS  Google Scholar 

  61. Takano Y, Houk KN (2005) J Chem Theor Comput 1:70–77

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the National Natural Science Foundation of China (No. 21001095) and China Postdoctoral Science Foundation (No. 20100480858).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Zhu or Mingsheng Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 348 kb)

ESM 2

(EXE 3870 kb)

ESM 3

(EXE 3734 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Zhu, Y., Tong, M. et al. Density functional theory studies on the inclusion complexes of cyclic decapeptide with 1-phenyl-1-propanol enantiomers. J Mol Model 18, 851–858 (2012). https://doi.org/10.1007/s00894-011-1119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1119-z

Keywords

Navigation