Skip to main content
Log in

Systematic characterization on electronic structures and spectra for a series of complexes, M(IDB)Cl2 (M = Mn, Fe, Co, Ni, Cu and Zn): a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical studies on the coordination stabilities, spectra and DNA-binding trend for the series of metal-varied complexes, M(IDB)Cl2 (M = Mn, Fe, Co, Ni, Cu and Zn; IDB = N, N -bis(2-benzimidazolylmethyl) amine), have been carried out by using the DFT/B3LYP method and PCM model. The calculated coordination stabilities (S) for these complexes present a trend of S(Ni) > S(Co) > S(Fe) > S(Cu) > S(Zn) > S(Mn). It has been estimated from the molecular orbital energies of the complexes that the DNA-binding affinities (A) of the complexes are in the order of A(Zn) < A(Mn) < A(Fe) ≈ A(Co) < A(Ni) < A(Cu). The studied results indicate that the Cu, Ni and Co complexes with large coordination stabilities present the low virtual orbitals, consequently yielding to the favorable DNA-binding affinities. The spectral properties of excitation energies and oscillator strengths for M(IDB)Cl2 in the ultraviolet region were calculated by TD-DFT/B3LYP method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton JK, Danishefsky A, Goldberg J (1984) J Am Chem Soc 106:2172–2176. doi:10.1021/ja00319a043

    Article  CAS  Google Scholar 

  2. Yaumei H, Barton J (1988) Proc Natl Acad Sci USA 85:1339–1343. doi:10.1073/pnas.85.5.1339

    Article  Google Scholar 

  3. Barton JK (1986) Science 233:727–734. doi:10.1126/science.3016894

    Article  CAS  Google Scholar 

  4. Hartshorn RM, Barton JK (1992) J Am Chem Soc 114:5919–5925. doi:10.1021/ja00041a002

    Article  CAS  Google Scholar 

  5. Hiort C, Lincoln P, Norden B (1993) J Am Chem Soc 115:3448–3454. doi:10.1021/ja00062a007

    Article  CAS  Google Scholar 

  6. Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215–224. doi:10.1039/b201945k

    Article  CAS  Google Scholar 

  7. Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK (1990) J Am Chem Soc 112:4960–4962. doi:10.1021/ja00168a052

    Article  CAS  Google Scholar 

  8. Olson EJC, Hu D, Hormann A, Jonkman AM, Arkin MR, Stemp EDA, Barton JK, Barbara PF (1997) J Am Chem Soc 119:11458–11467. doi:10.1021/ja971151d

    Article  CAS  Google Scholar 

  9. Jenkins Y, Barton JK (1992) J Am Chem Soc 114:8736–8738. doi:10.1021/ja00048a077

    Article  CAS  Google Scholar 

  10. Arounaguiri S, Maiya BG (1999) Inorg Chem 38:842–843. doi:10.1021/ic981109z

    Article  CAS  Google Scholar 

  11. Liu XW, Li J, Li H, Zheng KC, Chao H, Ji LN (2005) J Inorg Biochem 99:2372–2380

    Article  CAS  Google Scholar 

  12. Ji LN, Zou XH, Liu JG (2001) Coord Chem Rev 216–217:513–536. doi:10.1016/S0010-8545(01)00338-1

    Article  Google Scholar 

  13. Grimm GN, Boutorine AS, Lincoln P, Nordén B, Hélène C (2002) ChemBioChem 3:324–331. doi:10.1002/1439-7633(20020402)3:4<324::AID-CBIC324>3.0.CO;2-7

    Article  CAS  Google Scholar 

  14. Delaney S, Pascaly M, Bhattacharya PK, Han K, Barton JK (2002) Inorg Chem 41:1966–1974. doi:10.1021/ic0111738

    Article  CAS  Google Scholar 

  15. Maheswari PU, Palaniandavar M (2004) J Inorg Biochem 98:219–230. doi:10.1016/j.jinorgbio.2003.09.003

    Article  CAS  Google Scholar 

  16. Ruba E, Hart JR, Barton JK (2004) Inorg Chem 43:4570–4578. doi:10.1021/ic0499291

    Article  CAS  Google Scholar 

  17. Sigman DS, Mazumder A, Perrin DM (1993) Chem Rev 93:2295–2316. doi:10.1021/cr00022a011

    Article  CAS  Google Scholar 

  18. Claussen CA, Long EC (1999) Chem Rev 99:2797–2816. doi:10.1021/cr980449z

    Article  CAS  Google Scholar 

  19. Decker A, Chow MS, Kemsley JN, Lehnert N, Solomon EI (2006) J Am Chem Soc 128:4719–4733. doi:10.1021/ja057378n

    Article  CAS  Google Scholar 

  20. Maiti D, Woertink JS, Vance MA, Milligan AE, Sarjeant AAN, Solomon EI, Karlin KD (2007) J Am Chem Soc 129:8882–8892. doi:10.1021/ja071968z

    Article  CAS  Google Scholar 

  21. Decker A, Rohde J-U, Klinker EJ, Wong SD, Lawrence Que J, Solomon EI (2007) J Am Chem Soc 129:15983–15996. doi:10.1021/ja074900s

    Article  CAS  Google Scholar 

  22. Wang XY, Zhang J, Li K, Jiang N, Chen SY, Lin HH, Huang Y, Ma LJ, Yu XQ (2006) Bioorg Med Chem 14:6745–6751. doi:10.1016/j.bmc.2006.05.049

    Article  CAS  Google Scholar 

  23. Kang JW, Dong SQ, Lu XQ, Su BQ, Wu HX, Sun K (2006) Bioelectrochemistry 69:58–64. doi:10.1016/j.bioelechem.2005.10.005

    Article  CAS  Google Scholar 

  24. Zheng KC, Wang JP, Peng WL, Liu XW, Yun FC (2001) J Phys Chem A 105:10899–10905. doi:10.1021/jp0126560

    Article  CAS  Google Scholar 

  25. Erkkila KE, Odom DT, Barton JK (1999) Chem Rev 99:2777–2795. doi:10.1021/cr9804341

    Article  CAS  Google Scholar 

  26. Franklin SJ, Barton JK (1998) Biochemistry 37:16093–16105. doi:10.1021/bi981798q

    Article  CAS  Google Scholar 

  27. Hastings CA, Barton JK (1999) Biochemistry 38:10042–10051. doi:10.1021/bi982039a

    Article  CAS  Google Scholar 

  28. Xiong Y, Ji LN (1999) Coord Chem Rev 185–186:711–733. doi:10.1016/S0010-8545(99)00019-3

    Article  Google Scholar 

  29. Marincola FC, Casu M, Saba G, Lai A, Lincoln P, Norden B (1998) Chem Phys 236:301–308. doi:10.1016/S0301-0104(98)00199-2

    Article  CAS  Google Scholar 

  30. Lincoln P, Norden B (1998) J Phys Chem B 102:9583–9594. doi:10.1021/jp9824914

    Article  CAS  Google Scholar 

  31. Coggan DZM, Haworth IS, Bates PJ, Robinson A, Rodger A (1999) Inorg Chem 38:4486–4497. doi:10.1021/ic990654c

    Article  CAS  Google Scholar 

  32. Oyoshi T, Sugiyama H (2000) J Am Chem Soc 122:6313–6314. doi:10.1021/ja9919130

    Article  CAS  Google Scholar 

  33. Bales BC, Pitie M, Meunier B, Greenberg MM (2002) J Am Chem Soc 124:9062–9063. doi:10.1021/ja026970z

    Article  CAS  Google Scholar 

  34. Itoh Y, Hayashi H, Furutachi H, Matsumoto T, Nagatomo S, Tosha T, Terada S, Fujinami S, Suzuki M, Kitagawa T (2005) J Am Chem Soc 127:5212–5223. doi:10.1021/ja047437h

    Article  CAS  Google Scholar 

  35. Geierstanger BH, Mrksich M, Dervan PB, Wemmer DE (1994) Science 266:646–650. doi:10.1126/science.7939719

    Article  CAS  Google Scholar 

  36. Pratviel G, Bernadou J, Meunier B (1995) Angew Chem Int Ed Engl 34:746–749. doi:10.1002/anie.199507461

    Article  CAS  Google Scholar 

  37. Uma V, Kanthimathi M, Subramanian J, Nair BU (2006) Biochim Biophys Acta 1760:814–819

    CAS  Google Scholar 

  38. Barton JK, Raphael AL (1984) J Am Chem Soc 108:2466–2468. doi:10.1021/ja00320a058

    Article  Google Scholar 

  39. Kumar CV, Barton JK, Turro NJ (1985) J Am Chem Soc 107:5518–5523. doi:10.1021/ja00305a032

    Article  CAS  Google Scholar 

  40. Shields TP, Barton JK (1995) Biochemistry 34:15049–45056. doi:10.1021/bi00046a010

    Article  CAS  Google Scholar 

  41. Dupureur CM, Barton JK (1997) Inorg Chem 36:33–43. doi:10.1021/ic960738a

    Article  CAS  Google Scholar 

  42. Sitlani A, Barton JK (1994) Biochemistry 33:12100–12108. doi:10.1021/bi00206a013

    Article  CAS  Google Scholar 

  43. Jenkins Y, Friedman AE, Turro NJ, Barton JK (1992) Biochemistry 31:10809–10816. doi:10.1021/bi00159a023

    Article  CAS  Google Scholar 

  44. Dupureur CM, Barton JK (1994) J Am Chem Soc 116:10286–10287. doi:10.1021/ja00101a053

    Article  CAS  Google Scholar 

  45. Turro C, Bossmann SH, Jenkins Y, Barton JK, Turro NJ (1995) J Am Chem Soc 117:9026–9032. doi:10.1021/ja00140a020

    Article  CAS  Google Scholar 

  46. Barton JK, Goldberg JM, Kumar CV, Turro NJ (1986) J Am Chem Soc 108:2081–2088. doi:10.1021/ja00268a057

    Article  CAS  Google Scholar 

  47. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058. doi:10.1021/ja00190a046

    Article  CAS  Google Scholar 

  48. Sigman DS, Graham DR, D’Aurora V, Stern AM (1979) J Biol Chem 254:12269–12272

    CAS  Google Scholar 

  49. Sigman DS (1986) Acc Chem Res 19:180–186. doi:10.1021/ar00126a004

    Article  CAS  Google Scholar 

  50. Zhu YY, Su YW, Li XC, Wang Y, Chen GJ (2008) Chem Phys Lett 455:354–360. doi:10.1016/j.cplett.2008.03.004

    Article  CAS  Google Scholar 

  51. Li C, Qiao R-Z, Wang Y-Q, Zhao Y-F, Zeng R (2008) Bioorg Med Chem Lett 18:5766–5770. doi:10.1016/j.bmcl.2008.09.074

    Article  CAS  Google Scholar 

  52. Li C, Qiao R-Z, Zhao Y-F (2008) Int J Mass Spectrom 270:94–99. doi:10.1016/j.ijms.2007.10.011

    Article  CAS  Google Scholar 

  53. Sundberg RJ, Martin RB (1974) Chem Rev 74:471–517. doi:10.1021/cr60290a003

    Article  CAS  Google Scholar 

  54. Lombardy RL, Tanious FA, Ramachandran K, Tidwell RR, Wilson WD (1996) J Med Chem 39:1452–1462. doi:10.1021/jm9507946

    Article  CAS  Google Scholar 

  55. Liu CL, Yu SW, Li DF, Liao ZR, Sun XH, Xu HB (2002) Inorg Chem 41:913–922. doi:10.1021/ic010302h

    Article  CAS  Google Scholar 

  56. Vaidyanathan VG, Nair BU (2003) J Inorg Biochem 94:121–126. doi:10.1016/S0162-0134(02)00620-7

    Article  CAS  Google Scholar 

  57. Liu C, Wang M, Zhang T, Sun H (2004) Coord Chem Rev 248:147–168. doi:10.1016/j.cct.2003.11.002

    Article  CAS  Google Scholar 

  58. Zhou Q, Yang P (2006) Inorg Chim Acta 359:1200–1206. doi:10.1016/j.ica.2005.11.003

    Article  CAS  Google Scholar 

  59. Teng MK, Usman N, Frederick CA, Wang AHJ (1988) Nucleic Acids Res 16:2671–2690. doi:10.1093/nar/16.6.2671

    Article  CAS  Google Scholar 

  60. Parkinson JA, Barber J, Douglas KT, Rosamond J, Sharplest D (1990) Biochemistry 29:10181–10190. doi:10.1021/bi00496a005

    Article  CAS  Google Scholar 

  61. Mei WJ, Liu J, Zheng KC, Lin LJ, Chao H, Li AX, Yun FC, Ji LN (2003) Dalton Trans 1352–1359. doi:10.1039/b212443b

  62. Shi S, Liu J, Li J, Zheng KC, Huang XM, Tan CP, Chen LM, Ji LN (2006) J Inorg Biochem 100:385–395. doi:10.1016/j.jinorgbio.2005.12.005

    Article  CAS  Google Scholar 

  63. Zheng KC, Wang JP, Shen Y, Peng WL, Yun FC (2002) J Chem Soc, Dalton Trans 1:111–116. doi:10.1039/b105266g

    Article  CAS  Google Scholar 

  64. Li J, Xu LC, Chen JC, Zheng KC, Ji LN (2006) J Phys Chem A 110:8174–8180. doi:10.1021/jp0564389

    Article  CAS  Google Scholar 

  65. Xu LC, Li J, Shen Y, Zheng KC, Ji LN (2007) J Phys Chem A 111:273–280. doi:10.1021/jp064189y

    Article  CAS  Google Scholar 

  66. Pourtois G, Beljonne D, Moucheron C, Schumm S, Mesmaeker AK-D, Lazzaroni R, Bredas JL (2004) J Am Chem Soc 126:683–692. doi:10.1021/ja034444h

    Article  CAS  Google Scholar 

  67. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel M (2005) J Am Chem Soc 127:16835–16847. doi:10.1021/ja052467l

    Article  CAS  Google Scholar 

  68. Pfletschinger A, Koch W, Schmalz HG (2001) Chem Eur J 7:5325–5332. doi:10.1002/1521-3765(20011217)7:24<5325::AID-CHEM5325>3.0.CO;2-S

    Article  CAS  Google Scholar 

  69. Stoyanov SR, Villegas JM, Rillema DP (2002) Inorg Chem 41:2941–2945. doi:10.1021/ic0110629

    Article  CAS  Google Scholar 

  70. Zheng KC, Liu XW, Deng H, Chao H, Yun FC, Ji LN (2003) J Mol Struct THEOCHEM 626:295–304. doi:10.1016/S0166-1280(03)00103-9

    Article  CAS  Google Scholar 

  71. Jiang Q, Xiao N, Shi P, Zhu Y, Guoa Z (2007) Coord Chem Rev 251:1951–1972. doi:10.1016/j.ccr.2007.02.013

    Article  CAS  Google Scholar 

  72. Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  73. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  74. Stevens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  Google Scholar 

  75. Becke AD (1993) J Chem Phys 98:1372–1377. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  76. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  77. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  78. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835. doi:10.1063/1.467146

    Article  Google Scholar 

  79. Liu CL, Zhou JY, Li QX, Wang LJ, Liao ZR, Xu HB (1999) J Inorg Biochem 75:233–240. doi:10.1016/S0162-0134(99)00037-9

    Article  CAS  Google Scholar 

  80. Miertš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129. doi:10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  81. Glendening ED, Reed AE, Carpenter JE, Weinhold F. (included in the GAUSSIAN 03 package of programs), NBO Version 3.1

  82. Bai B, Deng K, Yang J, Zhu Q (2003) J Chem Phys 118:9608–9613. doi:10.1063/1.1555091

    Article  CAS  Google Scholar 

  83. Davidson ER (1975) J Comput Phys 17:87–94. doi:10.1016/0021-9991(75)90065-0

    Article  Google Scholar 

  84. O’Boyle NM, Vos JG (2006) GaussSum 2.0, Dublin City University

  85. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Gaussian, Inc., Wallingford CT

  86. Angelis FD, Fantacci S, Selloni A, Nazeeruddin MK (2005) Chem Phys Lett 415:115–120. doi:10.1016/j.cplett.2005.08.044

    Article  CAS  Google Scholar 

  87. Yamaguchi K, Koshino S, Akagi F, Suzuki M, Uehara A, Suzuki S (1997) J Am Chem Soc 119:5752–5753. doi:10.1021/ja963982+

    Article  CAS  Google Scholar 

  88. Zheng KC, Liu XW, Wang JP, Yun FC, Ji LN (2003) J Mol Struct THEOCHEM 637:195–203. doi:10.1016/S0166-1280(03)00539-6

    Article  CAS  Google Scholar 

  89. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  90. Davood NS, Maryam M, Farzad D (2006) J Mol Struct THEOCHEM 763:187–198. doi:10.1016/j.theochem.2006.01.032

    Article  CAS  Google Scholar 

  91. Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089–1107. doi:10.1021/cr960437i

    Article  CAS  Google Scholar 

  92. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–755. doi:10.1063/1.1700523

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 20673011, 20631020, and 20771017) and the Major State Basic Research Development Programs (grant No. G2004CB719900). We also acknowledge computing resources provided by the HPSC of Beijing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or Guangju Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Chen, Z., Guo, Z. et al. Systematic characterization on electronic structures and spectra for a series of complexes, M(IDB)Cl2 (M = Mn, Fe, Co, Ni, Cu and Zn): a theoretical study. J Mol Model 15, 469–479 (2009). https://doi.org/10.1007/s00894-008-0432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0432-7

Keywords

Navigation