Skip to main content

Advertisement

Log in

Theoretical investigations of a high density cage compound 10-(1-nitro-1, 2, 3, 4-tetraazol-5-yl)) methyl-2, 4, 6, 8, 12-hexanitrohexaazaisowurtzitane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A new polynitro cage compound with the framework of HNIW and a tetrazole unit, i.e., 10-(1-nitro-1, 2, 3, 4-tetraazol-5-yl)) methyl-2, 4, 6, 8, 12-hexanitrohexaazaisowurtzitane (NTz-HNIW) has been proposed and studied by density functional theory (DFT) and molecular mechanics methods. Properties such as IR spectrum, heat of formation, thermodynamic properties, and crystal structure were predicted. The compound belongs to the Pbca space group, with the lattice parameters a = 15.07 Å, b = 12.56 Å, c = 18.34 Å, Z = 8, and ρ = 1.990 g·cm-3. The stability of the compound was evaluated by the bond dissociation energies and results showed that the first step of pyrolysis is the rupture of the N–NO2 bond in the side chain. The detonation properties were estimated by the Kamlet-Jacobs equations based on the calculated crystal density and heat of formation, and the results were 9.240 km·s-1 for detonation velocity and 40.136 GPa for detonation pressure. The designed compound has high thermal stability and good detonation properties and is probably a promising high energy density compound (HEDC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sikder AK, Sikder N (2004) J Hazard Mater 112:1–15

    Article  CAS  Google Scholar 

  2. Millar RW, Philbin SP, Claridge RP, Hamid J (2004) Propell Explos Pyrot 29:81–92

    Article  CAS  Google Scholar 

  3. Chapman RD, Wilson WS, Fronabarger JW, Merwin LH, Ostrom GS (2002) Thermochim Acta 384:229–243

    Article  CAS  Google Scholar 

  4. Rajendra PS, Rajendar DV, Dayal TM, Jean’ne MS (2006) Angew Chem Int Ed 45:3584–3601

    Article  Google Scholar 

  5. Nielsen AT, Nissan RA, Vanderah DJ, Coon CL, Gilardi RD, George CF, Anderson JF (1990) J Org Chem 55:1459–1466

    Article  CAS  Google Scholar 

  6. Zhang MX, Eaton PE, Gilardi R, Gelber N, Iyer S, Surapaneni R (2002) Propell Explos Pyrot 27:1–6

    Article  Google Scholar 

  7. Zhang MX, Eaton PE, Gilardi R et al (2000) Propell Explos Pyrot 12:1143–1148

    Google Scholar 

  8. Schulman JM, Disch RL (1984) J Am Chem Soc 106:1202–1204

    Article  CAS  Google Scholar 

  9. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) J Phys Chem A 109:11268–11274

    Article  CAS  Google Scholar 

  10. Stetter H, Mayer J, Schwarz M, Wolff K (1960) Chem Ber 93:226–230

    Article  CAS  Google Scholar 

  11. Sun CH, Zhao XQ, Li YC, Pang SP (2010) Chin Chem Lett 21:572–575

    Article  CAS  Google Scholar 

  12. Zhang JY, Du HC, Wang F, Gong XD, Huang YS. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane revisions. J Phys Chem A (submitted 2010)

  13. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  14. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929–5933

    Article  CAS  Google Scholar 

  15. Qui L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem B 110:3797–3807

    Article  Google Scholar 

  16. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhao XC (2005) J Phys Chem A 109:11268–11274

    Article  CAS  Google Scholar 

  17. Qui L, Xiao HM, Zhu WH, Ju XH, Gong XD (2006) Chin J Chem 24:1538–1546

    Article  Google Scholar 

  18. Frisch MJ et al (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  19. Materials studio 4.4. (2009) Accelrys

  20. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular-orbital methods 25. Supplementary functions for Gaussian-basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  21. Becke AD (1992) J Chem Phys 97:9173–9178

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford

    Google Scholar 

  24. Seminario JH (ed) (1996) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam

    Google Scholar 

  25. Jursic BS (1996) THEOCHEM 370:65–69

    Article  CAS  Google Scholar 

  26. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) NBO, Version 3.1. Madison, WI

  27. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  28. Benson SW (1976) Thermochemical Kinetics. Wiley, New York

    Google Scholar 

  29. Yao XQ, Hou XJ, Wu GS, Xu YY, Xiang HW, Jiao H, Li YW (2002) J Phys Chem A 106:7184–7189

    Article  CAS  Google Scholar 

  30. Shao J, Cheng X, Yang X (2005) THEOCHEM 755:127–130

    Article  CAS  Google Scholar 

  31. Fan XW, Ju XH, Xia QY, Xiao HM (2008) J Hazard Mater 151:255–260

    Article  CAS  Google Scholar 

  32. Chernikova NY, Belsky VK, Zorkii PM (1990) J Struct Chem 31:661–666

    Article  Google Scholar 

  33. Mighell AD, Himes VL, Rodgers JR (1983) Acta Crystallogr A 39:737–740

    Article  Google Scholar 

  34. Wilson AJC (1988) Acta Crystallogr A 44:715–724

    Article  Google Scholar 

  35. Srinivasan R (1992) Acta Crystallogr A 48:917–918

    Article  Google Scholar 

  36. Baur WH, Kassner D (1992) Acta Crystallogr B 48:356–369

    Article  Google Scholar 

  37. Wang GX, Shi CH, Gong XD, Xiao HM (2008) THEOCHEM 869:98–104

    Article  CAS  Google Scholar 

  38. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062–8066

    Article  CAS  Google Scholar 

  39. Zhang J, Xiao HM (2002) J Chem Phys 116:10674–10678

    Article  CAS  Google Scholar 

  40. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  41. Jursic BS (1997) J Chem Phys 106:2555–2558

    Article  CAS  Google Scholar 

  42. Jursic BS (1997) THEOCHEM 391:75–81

    Article  CAS  Google Scholar 

  43. Jursic BS (1997) THEOCHEM 417:99–106

    Article  CAS  Google Scholar 

  44. Lide DR (ed) (2005) CRC Handbook of Chemistry and Physics, Internet Version

  45. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) J Phys Chem A 114:498–503

    Article  CAS  Google Scholar 

  46. Sun H (1998) J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  47. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  48. Zhang J, Xiao HM (2002) Chem Phys 116:10674–10683

    CAS  Google Scholar 

  49. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

    Google Scholar 

  50. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propell Explos Pyrot 22:249–255

    Article  CAS  Google Scholar 

  51. Gonzalez AC, Lamon CW, McMillen DF, Golden DM (1985) J Phys Chem 89:4809–4814

    Article  CAS  Google Scholar 

  52. Owens FJ, Jayasuriya K, Abrahmsen L, Politzer P (1985) Chem Phys Lett 116:434–438

    Article  CAS  Google Scholar 

  53. Xiao HM, Fan JF, Gu ZM, Dong HS (1996) Chem Phys 226:15–24

    Article  Google Scholar 

  54. Murray JS, Politzer P (1990) In: Bulusu SN (ed) Chemistry and Physics of Energetic Materials. Kluwer, Dordrecht, p 175

    Google Scholar 

  55. Michels HH, Montgomery JA (1993) J Phys Chem 97:6602–6606

    Article  CAS  Google Scholar 

  56. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011)

  57. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project is supported by the National Natural Science Foundation of China NSAF (Grant No. 11076017) and the Foundation of State Key Laboratory of Explosion Science and Technology of China (Grant No. KFJJ10-12 M)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Jy., Du, Hc., Wang, F. et al. Theoretical investigations of a high density cage compound 10-(1-nitro-1, 2, 3, 4-tetraazol-5-yl)) methyl-2, 4, 6, 8, 12-hexanitrohexaazaisowurtzitane. J Mol Model 18, 165–170 (2012). https://doi.org/10.1007/s00894-011-1053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1053-0

Keywords

Navigation