Skip to main content

Advertisement

Log in

Designing and looking for novel low-sensitivity and high-energy cage derivatives based on the skeleton of nonanitro nonaaza pentadecane framework

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We designed 12 novel cage-shaped high energy density compounds by incorporating –O– moiety and replacing up to two –NO2 groups at the different positions by –NH2 groups into the basic 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15 nonaazaheptacyclo [5.5.1.13, 11. 15, 9] pentadecane (NNNAHP) skeleton. Their geometrical structures, electronic structures, heats of formation, detonation properties, thermodynamic properties, thermal stability, impact sensitivity, and free spaces were studied by using density functional theory. The favorable substitution position is a very important factor to tune the detonation properties, thermal stability, and impact sensitivity of the designed compounds. The thermal stability of the designed compounds was analyzed based on the bond dissociation energy of the weakest bond among all the bonds in a compound. The impact sensitivity and free spaces of the designed compounds were compared with well-known cage high energy density compound CL-20. Due to large densities, excellent detonation performance, suitable thermal stability, and low sensitivity, 11 compounds were chosen as potential high energy density compounds having huge potential for their synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 10

Similar content being viewed by others

References

  1. Talawar M, Sivabalan R, Senthilkumar N, Prabhu G, Asthana S (2004) Synthesis, characterization and thermal studies on furazan- and tetrazine-based high energy materials. J Hazard Mater 113(1–3):11–25

    CAS  PubMed  Google Scholar 

  2. Wei T, Zhu W, Zhang X, Li Y-F, Xiao H (2009) Molecular design of 1, 2, 4, 5-tetrazine-based high-energy density materials. J Phys Chem A 113(33):9404–9412

    CAS  PubMed  Google Scholar 

  3. Wei T, Zhu W, Zhang J, Xiao H (2010) DFT study on energetic tetrazolo-[1, 5-b]-1, 2, 4, 5-tetrazine and 1, 2, 4-triazolo-[4, 3-b]-1, 2, 4, 5-tetrazine derivatives. J Hazard Mater 179(1–3):581–590

    CAS  PubMed  Google Scholar 

  4. Zhu W, Zhang C, Wei T, Xiao H (2011) Computational study of energetic nitrogen-rich derivatives of 1, 1′-and 5, 5′-bridged ditetrazoles. J Comput Chem 32(10):2298–2312

    CAS  PubMed  Google Scholar 

  5. Chi W, Li L, Li B, Wu H (2012) Density functional calculation on a high energy density compound having the formula C2OH4−n (NO2)n. Struct Chem 23(6):1837–1841

    CAS  Google Scholar 

  6. Klapötke TM, Piercey DG, Stierstorfer J, Weyrauther M (2012) The synthesis and energetic properties of 5, 7-dinitrobenzo-1, 2, 3, 4-tetrazine-1, 3-dioxide (DNBTDO). Propellants Explos Pyrotech 37(5):527–535

    Google Scholar 

  7. Liu H, Du H, Wang G, Liu Y, Gong X (2012) Molecular design of new nitramine explosives: 1, 3, 5, 7-tetranitro-8-(nitromethyl)-4-imidazolino [4, 5-b] 4-imidazolino-[4, 5-e] pyridine and its N-oxide. J Mol Model 18(4):1325–1331

    CAS  PubMed  Google Scholar 

  8. Klapötke TM, Leroux M, Schmid PC, Stierstorfer J (2016) Energetic materials based on 5, 5′-Diamino-4, 4′-dinitramino-3, 3′-bi-1, 2, 4-triazole. Chem Asian J 11(6):844–851

    PubMed  Google Scholar 

  9. Jin X, Xiao M, Zhou G, Zhou J, Hu B (2019) Molecule design and properties of bridged 2, 2-bi (1, 3, 4-oxadiazole) energetic derivatives. RSC Adv 9(10):5417–5430

    CAS  Google Scholar 

  10. Khan RU, Zhu S, Zhu W (2019) DFT studies on nitrogen-rich pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine–based high–energy density compounds. J Mol Model 25(9):283. https://doi.org/10.1007/s00894-019-4167-4

    Article  CAS  PubMed  Google Scholar 

  11. Paquette LA, Fischer JW, Engel P (1985) Synthesis and X-ray crystal structure analysis of a vicinally dinitro-substituted bishomopentaprismane. J Org Chem 50(14):2524–2527

    CAS  Google Scholar 

  12. Ghule V, Jadhav P, Patil R, Radhakrishnan S, Soman T (2009) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114(1):498–503

    Google Scholar 

  13. Tan B, Long X, Li J (2012) The cage strain energies of high-energy compounds. Comput Theor Chem 993:66–72

    CAS  Google Scholar 

  14. Lin H, Zhu S-g, Zhang L, Peng X-h, Chen P-y, Li H-z (2013) Theoretical investigation of a novel high density cage compound 4, 8, 11, 14, 15–pentanitro-2, 6, 9, 13–tetraoxa-4, 8, 11, 14, 15-pentaazaheptacyclo [5.5. 1.1 3, 11. 1 5, 9] pentadecane. J Mol Model 19(3):1019–1026

  15. Wang Y, Qi C, Song J-W, Zhao X-Q, Sun C-H, Pang S-P (2013) Trinitromethyl/trinitroethyl substituted CL-20 derivatives: structurally interesting and remarkably high energy. J Mol Model 19(3):1079–1087

    CAS  PubMed  Google Scholar 

  16. Wu Q, Zhu W, Xiao H (2014) Computer-aided design of two novel and super-high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv 4(8):3789–3797

    CAS  Google Scholar 

  17. Wu Q, Tan L, Hang Z, Wang J, Zhang Z, Zhu W (2015) A new design strategy on cage insensitive high explosives: symmetrically replacing carbon atoms by nitrogen atoms followed by the introduction of N-oxides. RSC Adv 5(113):93607–93614

    CAS  Google Scholar 

  18. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54(39):11793–11812

    CAS  Google Scholar 

  19. Zhang MX, Eaton PE, Gilardi R (2000) Hepta-and octanitrocubanes. Angew Chem Int Ed 39(2):401–404

    CAS  Google Scholar 

  20. Zhang J-y, Du H-c, Wang F, Gong X-d, Ying S-j (2012) Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptacyclo [5.5. 1.1 3, 11. 1 5, 9] pentadecane. J Mol Model 18(6):2369–2376

  21. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109(18):8978–8982

    CAS  PubMed  Google Scholar 

  22. Cao C, Gao S (2007) Two dominant factors influencing the impact sensitivities of nitrobenzenes and saturated nitro compounds. J Phys Chem B 111(43):12399–12402

    CAS  PubMed  Google Scholar 

  23. Liang L, Huang H, Wang K, Bian C, Song J, Ling L, Zhao F, Zhou Z (2012) Oxy-bridged bis (1H-tetrazol-5-yl) furazan and its energetic salts paired with nitrogen-rich cations: highly thermally stable energetic materials with low sensitivity. J Mater Chem 22(41):21954–21964

    CAS  Google Scholar 

  24. Pan Y, Zhu W (2018) Designing and looking for novel cage compounds based on bicyclo-HMX as high energy density compounds. RSC Adv 8(1):44–52

    CAS  Google Scholar 

  25. Pan Y, Zhu W, Xiao H (2018) Molecular design on a new family of azaoxaadamantane cage compounds as potential high-energy density compounds. Can J Chem 97(2):86–93

    Google Scholar 

  26. Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3 N-oxide. J Mater Chem A 2(32):13006–13015

    CAS  Google Scholar 

  27. Jiao Y, Liu Z, Zhu W (2018) Searching for a new family of modified CL-20 cage derivatives with high energy and low sensitivity. Struct Chem 29(3):837–845

    CAS  Google Scholar 

  28. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explosives, Pyrotechnics 41(3):414–425

    CAS  Google Scholar 

  29. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09 package. Gaussian Inc, Pittsburgh

    Google Scholar 

  30. Wang F, Du H, Zhang J, Gong X (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2, 4, 6, 8-tetranitro-1, 3, 5, 7-tetraazacubane as a novel high energy density material. J Phys Chem A 115(42):11788–11795

    CAS  PubMed  Google Scholar 

  31. Pan Y, Li J, Cheng B, Zhu W, Xiao H (2012) Computational studies on the heats of formation, energetic properties, and thermal stability of energetic nitrogen-rich furazano [3, 4-b] pyrazine-based derivatives. Comput Theor Chem 992:110–119

    CAS  Google Scholar 

  32. Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91(5):923–928

    CAS  Google Scholar 

  33. Byrd EF, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013

    CAS  PubMed  Google Scholar 

  34. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    CAS  Google Scholar 

  35. Kamlet MJ, Jacobs S (1968) Chemistry of detonations. I A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48(1):23–35

    CAS  Google Scholar 

  36. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16(5):895–901

    PubMed  Google Scholar 

  37. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20(5):2223

    PubMed  Google Scholar 

  38. Ravi P, Gore GM, Sikder AK, Tewari SP (2012) A DFT study on the structure-property relationship of aminonitropyrazole-2-oxides. Int J Quantum Chem 112(6):1667–1677

    CAS  Google Scholar 

  39. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153–163

    CAS  Google Scholar 

  40. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106(9):1770–1783

    CAS  Google Scholar 

  41. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree− Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100(41):16502–16513

    CAS  Google Scholar 

  42. Lide D (2004) The 84th edition of the CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  43. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first-and second-row compounds. J Chem Phys 94(11):7221–7230

    CAS  Google Scholar 

  44. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1079

    CAS  Google Scholar 

  45. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2–3):589–607

    CAS  PubMed  Google Scholar 

  46. Mader CL (1961) Detonation performance calculations using the Kistiakowsky-Wilson equation of state. Los Alamos Scientific Lab, N. Mex

    Google Scholar 

  47. Türker L, Varisļ S (2017) Defence technology. Interaction

  48. Keshavarz MH, Oftadeh M (2004) New method for estimating the heat of formation of CHNO explosives in crystalline state. High Temp High Pressures 36(4):499

    Google Scholar 

  49. Chung G, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104(23):5647–5650

    CAS  Google Scholar 

  50. Anders G, Borges Jr I (2011) Topological analysis of the molecular charge density and impact sensitivy models of energetic molecules. J Phys Chem A 115(32):9055–9068

    CAS  PubMed  Google Scholar 

  51. Oliveira MA, Borges Jr I (2019) On the molecular origin of the sensitivity to impact of cyclic nitramines. Int J Quantum Chem 119(8):e25868

    Google Scholar 

  52. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17(10):2569–2574

    PubMed  Google Scholar 

  53. Tsai D, Armstrong R (1994) Defect-enhanced structural relaxation mechanism for the evolution of hot spots in rapidly compressed crystals. J Phys Chem 98(43):10997–11000

    CAS  Google Scholar 

  54. Whitea C, Barretta J, Mintmirea J, Elert M, Robertson D (1995) Effects of Nanoscale Voids on the Sensitivity of Model Energetic Materials MRS Online Proceedings Library Archive 418

  55. Rice BM, Mattson W, Trevino SF (1998) Molecular-dynamics investigation of the desensitization of detonable material. Phys Rev E 57(5):5106

    CAS  Google Scholar 

  56. Tarver CM, Urtiew PA, Tran TD (2005) Sensitivity of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide. J Energ Mater 23(3):183–203

    CAS  Google Scholar 

  57. Lemons DS, Lund CM (1999) Thermodynamics of high temperature, Mie–Gruneisen solids. Am J Phys 67(12):1105–1108

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 21773119) and Science Challenging Program (no. TZ2016001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.U., Zhu, W. Designing and looking for novel low-sensitivity and high-energy cage derivatives based on the skeleton of nonanitro nonaaza pentadecane framework. Struct Chem 31, 1387–1402 (2020). https://doi.org/10.1007/s11224-020-01506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01506-y

Keywords

Navigation