Skip to main content
Log in

Mechanistic investigation of the base-promoted cycloselenoetherification of pent-4-en-1-ol

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism of phenylselenoetherification of pent-4-en-1-ol using some bases (pyridine, triethylamine, quinoline, 2,2′-bipyridine) as catalyst was examined through studies of kinetics of the cyclization, by UV-VIS spectrophotometry. It was demonstrated that the intramolecular cyclization is facilitated in the presence of bases caused by the hydrogen bond between base and alkenol’s OH-group. The obtained values for rate constants have shown that the reaction with triethylamine is the fastest one. Quantum chemical calculations (MP2(fc)/6-311+G**//B3LYP/6-311+G**) show, that the transition state of the cyclisation is SN2 like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beaulieu PL, Dẻziel R (1999) In: Back TG (ed) Organoselenium chemistry: A practical aproach. Oxford University Press, Oxford, pp 35–66

    Google Scholar 

  2. Wirth T (1999) Chiral selenium compounds in organic synthesis. Tetrahedron 55:1–28

    Article  CAS  Google Scholar 

  3. Wirth T (2000) In: Wirth T (ed) Organoselenium chemistry: Modern developments in organic synthesis. (Top Curr Chem), Springer, Berlin, pp 208-259

  4. Wirth T (2000) Organoselenium chemistry in stereoselective synthesis. Angew Chem 112:3890–3900

    Article  Google Scholar 

  5. Wirth T (2000) Organoselenium chemistry in stereoselective synthesis. Angew Chem Int Ed 39:3740–3749

    Article  CAS  Google Scholar 

  6. Wirth T (2006) In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III, vol 9. Elsevier, Oxford, pp 457–500

    Google Scholar 

  7. Braga AL, Lűdtke DS, Vargas F, Braga RC (2006) Catalytic applications of chiral organoselenium compounds in asymmetric synthesis. Synlett 10:1453–1466

    Article  Google Scholar 

  8. Browne DM, Wirth T (2006) New developments with chiral electrophilic selenium reagents. Curr Org Chem 10:1893–1903

    Article  CAS  Google Scholar 

  9. Freudendahl DM, Shahzad SA, Wirth T (2009) Recent advances in organoselenium chemistry. Eur J Org Chem 11:1649–1664

    Article  Google Scholar 

  10. Paulimer C (1986) In: Baldwin IE (ed) Selenium reagents and intermediates in organic synthesis, vol 4. Pergamon Press, New York

    Google Scholar 

  11. Paulimer C (1987) In: Patai S (ed) Chemistry of organic selenium and tellurium compounds, vol 2. Wiley, New York

    Google Scholar 

  12. Tiecco M (2000) Electrophilic selenium, selenocyclizations. Top Curr Chem 208:7–54

    Article  CAS  Google Scholar 

  13. Bugarčić ZM, Gavrilović MP, Divac VM (2007) An improved phenylselenoetherification of pent-4-en-1-ol. Monatsh Chem 138:149–151

    Article  Google Scholar 

  14. Bugarčić ZM, Divac VM, Gavrilović MP (2007) An efficient route to phenylselenoethers in the presence of Ag2O. Monatsh Chem 138:985–988

    Article  Google Scholar 

  15. Mojsilovic B, Bugarcic Z (2001) Pyridine-facilitated phenylselenoetherification of some tertiary alkenols. Heteroat Chem 12:475–479

    Article  CAS  Google Scholar 

  16. Bugarcić Z, Mojsilović B (2004) An improved procedure for phenylselenoetherification of some Delta(5)-alkenols using pyridine, Ag2O, and some Lewis acids as catalysts. Heteroat Chem 2:146–149

    Article  Google Scholar 

  17. Bugarčić ZM, Mojsilović BM, Divac VM (2007) Facile pyridine-catalyzed phenylselenoetherification of alkenols. J Mol Catal A Chem 172:288–292

    Google Scholar 

  18. Bugarčić ZM, Petrović BV, Rvović MD (2008) Kinetics and mechanism of the pyridine-catalyzed reaction of phenylselenenyl halides and some unsaturated alcohols. J Mol Catal A Chem 287:171–175

    Article  Google Scholar 

  19. Bugarcic ZM, Rvovic MD, Divac VM (2009) Based catalyzed phenylselenoetherification of 6-methylhept-5-en-2-ol. ARKIVOC 14:135–145

    Google Scholar 

  20. Schmid GH, Garrat DG (1983) Organoselenium chemistry. 13. Reaction of areneselenenyl chlorides and alkenes. An example of nucleophilic displacement at bivalent selenium. J Org Chem 48:4169–4172

    Article  CAS  Google Scholar 

  21. Divac VM, Bugarcic ZM (2009) Regio- and stereoselectivity in phenylselenoetherification of (Z)- and (E)-Hex-4-en-1-ols. Synthesis 21:3684–3688

    Google Scholar 

  22. Divac VM, Rvovic MD, Bugarcic ZM (2008) Rapid SnCl2 catalyzed phenylselenoetherification of (Z)- and (E)-hex-4-en-1-ols. Monatsh Chem 139(11):1373–1376

    Article  CAS  Google Scholar 

  23. Espenson JH (1995) Chemical kinetics and reaction mechanism, ch 2 and 6, 2nd edn. McGrow Hill, New York

    Google Scholar 

  24. Stevens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  27. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, ch 13, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  28. Wodrich MD, Corminboeuf C, von Ragué Schleyer P (2006) Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Org Lett 8:3631–3634

    Article  CAS  Google Scholar 

  29. Schreiner PR, Fokin AA, Pascal RA, de Meijere AP (2006) Many density functional theory approaches fail to give reliable large hydrocarbon isomer energy differences. Org Lett 8:3635–3638

    Article  CAS  Google Scholar 

  30. Grimme S, Steinmetz M, Korth M (2007) How to compute isomerization energies of organic molecules with quantum chemical methods. J Org Chem 72:2118–2126

    Article  CAS  Google Scholar 

  31. Wodrich MD, Corminboeuf C, Schreiner PR, Fokin AA, von Ragué Schleyer P (2006) How accurate are DFT treatments of organic energies. Org Lett 9:1851–1854

    Article  CAS  Google Scholar 

  32. Schreiner PR (2007) Relative energy computations with approximate density functional theory – a caveat. Angew Chem Int Ed 46:4217–4219

    Article  CAS  Google Scholar 

  33. Hehre WJ, Radom L, von Ragué Schleyer P, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.03. Gaussian Inc, Wallingford, CT

    Google Scholar 

  35. Clark T, Hennemann M, Murray JS, Politzer PJ (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  36. Murray JS, Lane P, Clark T, Politzer PJ (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  37. Murray JS, Lane P, Politzer PJ (2008) Simultaneous σ-hole and hydrogen bonding by sulfur- and selenium- containing heterocycles. Int J Quantum Chem 108:2770–2781

    Article  CAS  Google Scholar 

  38. Politzer PJ, Murray JS, Concha MM (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  39. Poleschner H, Sepplet K (2008) Selenirenium and tellurirenium ions. Angew Chem Int Ed 47:6461–6464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Minister of Science, Technology and Development of the Republic of Serbia (Grant: 142008). We would like to thank Prof. Rudi van Eldik for support and Prof. Tim Clark for hosting this work in the CCC and the Regionales Rechenzentrum Erlangen (RRZE) for a generous allotment of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica M. Bugarčić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rvovic, M.D., Divac, V.M., Puchta, R. et al. Mechanistic investigation of the base-promoted cycloselenoetherification of pent-4-en-1-ol. J Mol Model 17, 1251–1257 (2011). https://doi.org/10.1007/s00894-010-0824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0824-3

Keywords

Navigation