Skip to main content

Advertisement

Log in

Prediction of treatment response from the microenvironment of tumor immunity in cervical cancer patients treated with chemoradiotherapy

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

To supplement clinical decision-making in the management of cervical cancer, various prognostic factors, including tumor immune microenvironments, were examined in patients with cervical cancer treated with definitive chemoradiotherapy. We retrospectively analyzed the expression of CD8, FoxP3, HLA-1, PD-L1, and XRCC4 in 100 cases of cervical cancer. The observed tumor immune microenvironments were also classified into three types: inflamed, excluded, and cold type. Less FoxP3+ T cells and cold-type tumor were found to be poor prognostic factors in addition to non-SCC, large pre-treatment tumor volume, and three or less cycles of concurrent chemotherapy based on multivariate analysis. Cold-type tumors had significantly worse prognoses than the other two types, whereas inflamed- and excluded-type tumors showed similar 5-year disease-specific survival (P < 0.001; 0% vs. 60.3% vs. 72.3%). Radiotherapy could overcome the inhibitory immune microenvironment that occurs in excluded type. Individualized combination therapy adapted to pre-treatment tumor immunity may be necessary to improve radiotherapy outcomes in cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. National Cancer Comprehensive Network 2020 NCCN guidelines: cervical cancer version 1. http://www.nccn.org/. Accessed on 1 Jan 2021.

  2. Pötter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, GEC ESTRO Working Group et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78:67–77. https://doi.org/10.1016/j.radonc.2005.11.014

    Article  Google Scholar 

  3. Sturdza A, Pötter R, Fokdal LU, Haie-Meder C, Tan LT, Mazeron R et al (2016) Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol 120:428–433. https://doi.org/10.1016/j.radonc.2016.03.011

    Article  PubMed  Google Scholar 

  4. Tanderup K, Fokdal LU, Sturdza A, Haie-Meder C, Mazeron R, van Limbergen E et al (2016) Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol 120:441–446. https://doi.org/10.1016/j.radonc.2016.05.014

    Article  PubMed  Google Scholar 

  5. Takada Y, Someya M, Matsumoto Y, Satoh M, Nakata K, Hori M et al (2016) Influence of Ku86 and XRCC4 expression in uterine cervical cancer on the response to preoperative radiotherapy. Med Mol Morphol 49:210–216. https://doi.org/10.1007/s00795-016-0136-5

    Article  CAS  PubMed  Google Scholar 

  6. Tsuchiya T, Someya M, Takada Y, Hasegawa T, Kitagawa M, Fukushima Y et al (2020) Association between radiotherapy-induced alteration of programmed death ligand 1 and survival in patients with uterine cervical cancer undergoing preoperative radiotherapy. Strahlenther Onkol 196:725–735. https://doi.org/10.1007/s00066-019-01571-1

    Article  PubMed  Google Scholar 

  7. Someya M, Tsuchiya T, Fukushima Y, Hasegawa T, Takada Y, Hori M et al (2020) Association between cancer immunity and treatment results in uterine cervical cancer patients treated with radiotherapy. Jpn J Clin Oncol 50:1290–1297. https://doi.org/10.1093/jjco/hyaa149

    Article  PubMed  Google Scholar 

  8. Camus M, Tosolini M, Mlecnik B, Pagès F, Kirilovsky A, Berger A et al (2009) Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 69:2685–2693. https://doi.org/10.1158/0008-5472.CAN-08-2654

    Article  CAS  PubMed  Google Scholar 

  9. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18:197–218. https://doi.org/10.1038/s41573-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki Y, Mimura K, Yoshimoto Y, Watanabe M, Ohkubo Y, Izawa S et al (2012) Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res 72:3967–3976. https://doi.org/10.1158/0008-5472.CAN-12-0851

    Article  CAS  PubMed  Google Scholar 

  11. Someya M, Hasegawa T, Tsuchiya T, Kitagawa M, Gocho T, Fukushima Y et al (2020) Retrospective DVH analysis of point A based intracavitary brachytherapy for uterine cervical cancer. J Radiat Res 61:265–274. https://doi.org/10.1093/jrr/rrz099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakata K, Matsumoto Y, Tauchi H, Satoh M, Oouchi A, Nagakura H et al (2001) Expression of genes involved in repair of DNA double-strand breaks in normal and tumor tissues. Int J Radiat Oncol Biol Phys 49:161–167. https://doi.org/10.1016/s0360-3016(00)01352-3

    Article  CAS  PubMed  Google Scholar 

  13. Rose PG, Java JJ, Whitney CW, Stehman FB, Lanciano R, Thomas GM (2014) Locally advanced adenocarcinoma and adenosquamous carcinomas of the cervix compared to squamous cell carcinomas of the cervix in gynecologic oncology group trials of cisplatin-based chemoradiation. Gynecol Oncol 135(2):208–212. https://doi.org/10.1016/j.ygyno.2014.08.018

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration (2008) Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 26(35):5802–5812. https://doi.org/10.1200/JCO.2008.16.4368

    Article  CAS  PubMed Central  Google Scholar 

  15. Ho CK, Kornaga EN, Klimowicz AC, Enwere EK, Dean M, Bebb GD et al (2017) Expression of DNA damage response proteins in cervical cancer patients treated with radical chemoradiotherapy. Gynecol Oncol 145(1):176–184. https://doi.org/10.1016/j.ygyno.2016.12.025

    Article  CAS  PubMed  Google Scholar 

  16. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 14(5):15179. https://doi.org/10.1038/srep15179

    Article  CAS  Google Scholar 

  17. Balermpas P, Martin D, Wieland U, Rave-Fränk M, Strebhardt K, Rödel C et al (2017) Human papilloma virus load and PD-1/PD-L1, CD8+ and FOXP3 in anal cancer patients treated with chemoradiotherapy: Rationale for immunotherapy. Oncoimmunology 6:e1288331. https://doi.org/10.1080/2162402X.2017.1288331

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29:610–618. https://doi.org/10.1200/JCO.2010.30.5425

    Article  PubMed  Google Scholar 

  19. Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D et al (2016) Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44:698–711. https://doi.org/10.1016/j.immuni.2016.02.025

    Article  CAS  PubMed  Google Scholar 

  20. Martins PR, Machado CMT, Coxir SA, de Oliveira AJ, Moreira TB, Campos LS et al (2019) Cervical cancer patients that respond to chemoradiation therapy display an intense tumor infiltrating immune profile before treatment. Exp Mol Pathol 111:104314. https://doi.org/10.1016/j.yexmp.2019.104314

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Xia B, Zheng T, Lou G (2020) Immunoscore system combining CD8 and PD-1/PD-L1: a novel approach that predicts the clinical outcomes for cervical cancer. Int J Biol Markers 35:65–73. https://doi.org/10.1177/1724600819888771

    Article  CAS  PubMed  Google Scholar 

  22. Hellmann MD, Friedman CF, Wolchok JD (2016) Combinatorial cancer immunotherapies. Adv Immunol 130:251–277. https://doi.org/10.1016/bs.ai.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  23. Demaria S, Coleman CN, Formenti SC (2016) Radiotherapy: changing the game in immunotherapy. Trends Cancer 2:286–294. https://doi.org/10.1016/j.trecan.2016.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    CAS  Google Scholar 

  25. Hegde PS, Karanikas V, Evers S (2016) The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res 22:1865–1874. https://doi.org/10.1158/1078-0432.CCR-15-1507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 18K07760 and 18K07684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Someya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 193 kb)

Supplementary file2 (TIF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Someya, M., Tsuchiya, T., Fukushima, Y. et al. Prediction of treatment response from the microenvironment of tumor immunity in cervical cancer patients treated with chemoradiotherapy. Med Mol Morphol 54, 245–252 (2021). https://doi.org/10.1007/s00795-021-00290-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-021-00290-w

Keywords

Navigation