Skip to main content
Log in

Association between radiotherapy-induced alteration of programmed death ligand 1 and survival in patients with uterine cervical cancer undergoing preoperative radiotherapy

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To evaluate radiotherapy-induced changes in the expression of programmed death ligand 1 (PD-L1), programmed death 1 (PD-1), and human leukocyte antigen class I (HLA-1) in patients with uterine cervical cancer, as well as infiltration of CD8+ and Forkhead box P3+ (FoxP3+) T lymphocytes into tumor tissue and the prognostic value of these parameters.

Materials and methods

We performed immunohistochemical analysis of pre-radiotherapy biopsies and corresponding post-radiotherapy resected tissues in 104 uterine cervical cancer patients undergoing preoperative chemoradiotherapy or radiotherapy alone. We scored the expression of various proteins to distinguish positive from negative samples.

Results

PD-L1-expressing tumor cells (PD-L1 TC) increased significantly after chemoradiotherapy (p = 0.043). CD8+ T cell infiltration (p = 0.002) and FoxP3+ T cell infiltration (p = 0.003) decreased significantly after chemoradiotherapy. Expression of PD‑1, PD-L1-expressing immune cells (PD-L1 IC), and HLA‑1 did not change after chemoradiotherapy. In biopsy specimens obtained before chemoradiotherapy or radiotherapy, greater infiltration of CD8+ T cells (p = 0.001) and FoxP3+ T cells (p = 0.003) were significant predictors of better overall survival (OS). In surgical specimens obtained after chemoradiotherapy or radiotherapy, greater infiltration of PD-L1 TC was the only significant predictor of better OS (p < 0.001) and was related to a significantly lower probability of out-of-field recurrence (p = 0.005).

Conclusion

Chemoradiotherapy induced an immunologic shift that increased PD-L1 TC. Chemoradiotherapy has immunological effects that can influence the results of treatment for uterine cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73. https://doi.org/10.1038/nri2216

    Article  CAS  PubMed  Google Scholar 

  2. Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10:718–726. https://doi.org/10.1016/S1470-2045(09)70082-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schmidt MA, Förtsch C, Schmidt M, Rau TT, Fietkau R, Distel LV (2012) Circulating regulatory T cells of cancer patients receiving radiochemotherapy may be useful to individualize cancer treatment. Radiother Oncol 104:131–138. https://doi.org/10.1016/j.radonc.2012.05.003

    Article  PubMed  Google Scholar 

  4. Schaue D, Comin-Anduix B, Ribas A, Zhang L, Goodglick L, Sayre JW, Debucquoy A, Haustermans K, McBride WH (2008) T‑cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res 14:4883–4890. https://doi.org/10.1158/1078-0432.CCR-07-4462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695. https://doi.org/10.1172/JCI67313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, Jones H, Wilkinson RW, Honeychurch J, Illidge TM (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468. https://doi.org/10.1158/0008-5472.CAN-14-1258

    Article  CAS  PubMed  Google Scholar 

  7. de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20:5384–5391. https://doi.org/10.1158/1078-0432.CCR-14-1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takada Y, Someya M, Matsumoto Y, Satoh M, Nakata K, Hori M, Saito M, Hirokawa N, Tateoka K, Teramoto M, Saito T, Hasegawa T, Sakata KI (2016) Influence of Ku86 and XRCC4 expression in uterine cervical cancer on the response to preoperative radiotherapy. Med Mol Morphol 49:210–216. https://doi.org/10.1007/s00795-016-0136-5

    Article  CAS  PubMed  Google Scholar 

  9. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. https://doi.org/10.1038/nrc.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fontenot JD, Gavin MA, Rudensky AY (2017) Pillars Article: Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells. J Immunol 198:986–992. https://doi.org/10.1038/ni904

    Article  CAS  PubMed  Google Scholar 

  11. Sakata K, Matsumoto Y, Tauchi H, Satoh M, Oouchi A, Nagakura H, Koito K, Hosoi Y, Suzuki N, Komatsu K, Hareyama M (2001) Expression of genes involved in repair of DNA double-strand breaks in normal and tumor tissues. Int J Radiat Oncol Biol Phys 49:161–167. https://doi.org/10.1016/S0360-3016(00)01352-3

    Article  CAS  PubMed  Google Scholar 

  12. Kim HR, Ha SJ, Hong MH, Heo SJ, Koh YW, Choi EC, Kim EK, Pyo KH, Jung I, Seo D, Choi J, Cho BC, Yoon SO (2016) PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep 6:36956. https://doi.org/10.1038/srep36956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A, Group PS (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837–1846. https://doi.org/10.1016/S0140-6736(16)00587-0

    Article  CAS  PubMed  Google Scholar 

  14. Ventana Medical Systems, Inc. (2016) http://www.accessdata.fda.gov/cdrh_docs/pdf16/P160002c.pdf. Accessed 10 June 2019

  15. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  16. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. https://doi.org/10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–581. https://doi.org/10.1038/nature13988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao Y, Freeman GJ (2015) The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov 5:16–18. https://doi.org/10.1158/2159-8290.CD-14-1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, Chowdhury D, Wu CJ, D’Andrea AD, Matulonis UA, Konstantinopoulos PA (2016) Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7:13587–13598. https://doi.org/10.18632/oncotarget.7277

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515:572–576. https://doi.org/10.1038/nature14001

    Article  CAS  PubMed  Google Scholar 

  21. Piersma SJ, Welters MJ, van der Hulst JM, Kloth JN, Kwappenberg KM, Trimbos BJ, Melief CJ, Hellebrekers BW, Fleuren GJ, Kenter GG, Offringa R, van der Burg SH (2008) Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and -DP as a restriction element. Int J Cancer 122:486–494. https://doi.org/10.1002/ijc.23162

    Article  CAS  PubMed  Google Scholar 

  22. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, Yoshimoto Y, Held KD, Suzuki Y, Kono K, Miyagawa K, Nakano T, Shibata A (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8:1751. https://doi.org/10.1038/s41467-017-01883-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim YJ, Koh J, Kim S, Jeon SR, Chie EK, Kim K, Kang GH, Han SW, Kim TY, Jeong SY, Park KJ, Wu HG (2017) Chemoradiation-induced alteration of programmed death-Ligand 1 and CD8. Int J Radiat Oncol Biol Phys 99:1216–1224. https://doi.org/10.1016/j.ijrobp.2017.07.004

    Article  PubMed  Google Scholar 

  24. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, Levionnois E, Nizard M, Si-Mohamed A, Besnier N, Gey A, Rotem-Yehudar R, Pere H, Tran T, Guerin CL, Chauvat A, Dransart E, Alanio C, Albert S, Barry B, Sandoval F, Quintin-Colonna F, Bruneval P, Fridman WH, Lemoine FM, Oudard S, Johannes L, Olive D, Brasnu D, Tartour E (2013) PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 73:128–138. https://doi.org/10.1158/0008-5472.CAN-12-2606

    Article  CAS  PubMed  Google Scholar 

  25. Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67:354–361. https://doi.org/10.1158/0008-5472.CAN-06-3388

    Article  CAS  PubMed  Google Scholar 

  26. Balermpas P, Martin D, Wieland U, Rave-Fränk M, Strebhardt K, Rödel C, Fokas E, Rödel F (2017) Human papilloma virus load and PD-1/PD-L1, CD8. OncoImmunology 6:e1288331. https://doi.org/10.1080/2162402X.2017.1288331

    Article  PubMed  PubMed Central  Google Scholar 

  27. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, Chen L (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127ra37. https://doi.org/10.1126/scitranslmed.3003689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Enwere EK, Kornaga EN, Dean M, Koulis TA, Phan T, Kalantarian M, Köbel M, Ghatage P, Magliocco AM, Lees-Miller SP, Doll CM (2017) Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod Pathol 30:577–586. https://doi.org/10.1038/modpathol.2016.221

    Article  CAS  PubMed  Google Scholar 

  29. Fukushima Y, Someya M, Nakata K, Hori M, Kitagawa M, Hasegawa T, Tsuchiya T, Gocho T, Ikeda H, Hirohashi Y, Torigoe T, Sugita S, Himi T, Sakata KI (2018) Influence of PD-L1 expression in immune cells on the response to radiation therapy in patients with oropharyngeal squamous cell carcinoma. Radiother Oncol 129:409–414. https://doi.org/10.1016/j.radonc.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  30. Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L, Rimm DL (2014) Programmed death ligand‑1 expression in non-small cell lung cancer. Lab Invest 94:107–116. https://doi.org/10.1038/labinvest.2013.130

    Article  CAS  PubMed  Google Scholar 

  31. Rückert M, Deloch L, Fietkau R, Frey B, Hecht M, Gaipl US (2018) Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther Onkol 194:509–519. https://doi.org/10.1007/s00066-018-1287-1

    Article  PubMed  Google Scholar 

  32. Suzuki Y, Mimura K, Yoshimoto Y, Watanabe M, Ohkubo Y, Izawa S, Murata K, Fujii H, Nakano T, Kono K (2012) Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res 72:3967–3976. https://doi.org/10.1158/0008-5472.CAN-12-0851

    Article  CAS  PubMed  Google Scholar 

  33. Derer A, Spiljar M, Bäumler M, Hecht M, Fietkau R, Frey B, Gaipl US (2016) Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front Immunol 7:610. https://doi.org/10.3389/fimmu.2016.00610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kunz P, Fellenberg J, Moskovszky L, Sápi Z, Krenacs T, Poeschl J, Lehner B, Szendrõi M, Ewerbeck V, Kinscherf R, Fritzsching B (2014) Osteosarcoma microenvironment: whole-slide imaging and optimized antigen detection overcome major limitations in immunohistochemical quantification. Plos One 9(3):e90727. https://doi.org/10.1371/journal.pone.0090727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McIntire PJ, Irshaid L, Liu Y, Chen Z, Menken F, Nowak E, Shin SJ, Ginter PS (2018) Hot spot and whole-tumor enumeration of CD8(+) tumor-infiltrating lymphocytes utilizing digital image analysis is prognostic in triple-negative breast cancer. Clin Breast Cancer 18:451–458. https://doi.org/10.1016/j.clbc.2018.04.019

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by Grant-in-aid of Ono Cancer Research Fund and JSPS KAKENHI Grant Number JP18K07684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh-ichi Sakata MD PhD.

Ethics declarations

Conflict of interest

T. Tsuchiya, M. Someya, Y. Takada, T. Hasegawa, M. Kitagawa, Y. Fukushima, T. Gocho, M. Hori, K. Nakata, Y. Hirohashi, T. Torigoe, T. Saito, and K.-i. Sakata declare that they have no competing interests.

Caption Electronic Supplementary Material

66_2019_1571_MOESM1_ESM.tif

Figure E1. Representative positive controls showing immunohistochemical staining. (A) A placenta stained by PD-L1. (B) A lymph node stained by PD‑1. (C) A granulation tissue stained by CD8. (D) A lymph node stained by FoxP3. (E) A granulation tissue stained by HLA I

66_2019_1571_MOESM2_ESM.tif

Figure E2. A representative sample showing PD-L1 expressing tumor cell (TC) (→) and immune cell (IC) (▲; immune cells are found in the contiguous peritumoral stroma)

66_2019_1571_MOESM3_ESM.tif

Figure E3. The ROC curve (left side) and the distributions of each expression of various proteins (right side; red circles in ROC curve indicate cutoff point by Youden’s method; horizontal dotted lines in scatter plot show cutoff value of each protein)

Figure E4. Clinical outcomes for all patients

66_2019_1571_MOESM5_ESM.tif

Figure E5. The comparison of the expression of proteins in biopsy specimens before radiotherapy between non-pCR case and pCR case (values of x‑axis mean average expression ± standard deviation. Red horizontal bars in graph indicate average value)

66_2019_1571_MOESM6_ESM.docx

Table E1.The cutoff value obtained by Youden index from ROC curve and 25%, 50%, and 75% points of expression rate (results were presented that tend to be associated with prognosis: PD-L1 TC of the surgical sample after radiotherapy and PD-L1 IC, CD8, HLA‑1, FoxP3, and PD‑1 of the biopsy sample before radiotherapy)

66_2019_1571_MOESM7_ESM.docx

Table E2. Univariate analyses (Fisher’s exact test) for the clinical prognostic factors using immunohistochemical factors with samples before radiotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchiya, T., Someya, M., Takada, Y. et al. Association between radiotherapy-induced alteration of programmed death ligand 1 and survival in patients with uterine cervical cancer undergoing preoperative radiotherapy. Strahlenther Onkol 196, 725–735 (2020). https://doi.org/10.1007/s00066-019-01571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01571-1

Keywords

Navigation