Skip to main content
Log in

Expression of GABAA and GABAB receptors in rat growth plate chondrocytes: Activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Our previous study showed the local production of γ-aminobutyrate (GABA) in hypertrophic-zone chondrocytes of the rat tibial growth plate, an important long bone growth site. The aim of this study was to identify the presence of GABA receptors in growth plate chondrocytes by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Chondrocytes expressed both GABAA and GABAB receptor subunit mRNAs as well as the corresponding proteins necessary for the assembly of functional receptors. The GABAA receptor subunits detected included α1–α4, α6, β1–β3, and δ, and both R1 and R2 subunits of GABAB receptors were detected. All receptor subunits were expressed in chondrocytes of the proliferative and hypertrophic zones. These results suggest that GABA is an autocrine/paracrine factor that regulates the physiological state of the growth plate. Subsequent studies with the mouse chondrogenic cell line ATDC5 showed the presence of mRNAs and the corresponding proteins for GABAA receptor α1, β2, and β3 subunits and GABAB receptor R1 and R2 subunits. GABA, muscimol (a GABAA receptor agonist), and baclofen (a GABAB receptor agonist) increased 5-bromodeoxyuridine (BrdU) incorporation into ATDC5 cells. The effect of muscimol was blocked by bicuculline (a GABAA receptor antagonist), and the effect of baclofen was blocked by CGP 35348 (a GABAB receptor antagonist). These results suggest that GABA contributes to the ATDC5 cell proliferation via GABAA and GABAB receptors and these mechanisms may be involved in cartilaginous cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunziker EB: Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Technol 28: 505–519, 1994

    Article  CAS  Google Scholar 

  2. Farnum CE, Wilsman NJ: Determination of proliferative characteristics of growth plate chondrocytes by labeling with bromodeoxyuridine. Calcif Tissue Int 52: 110–119, 1993

    Article  CAS  PubMed  Google Scholar 

  3. Kember NF, Sissons HA: Quantitative histology of the human growth plate. J Bone Joint Surg Br 58-B: 426–435, 1976

    CAS  PubMed  Google Scholar 

  4. Walker KV, Kember NF: Cell kinetics of growth cartilage in the rat tibia. I: Measurements in young male rats. Cell Tissue Kinet 5: 401–408, 1972

    CAS  PubMed  Google Scholar 

  5. Iannotti JP: Growth plate physiology and pathology. Orthop Clin North Am 21: 1–17, 1990

    CAS  Google Scholar 

  6. Brighton CT: The growth plate. Orthop Clin North Am 15: 571–595, 1984

    CAS  PubMed  Google Scholar 

  7. Cancedda R, Descalzi Cancedda F, Castagnola P: Chondrocyte differentiation. Int Rev Cytol 159: 265–358, 1995

    CAS  PubMed  Google Scholar 

  8. Rosselot G, Vasilatos-Younken R, Leach RM: Effect of growth hormone, insulin-like growth factor I, Basic fibroblast growth factor, and transforming growth factor beta on cell proliferation and proteoglycan synthesis by avian postembryonic growth plate chondrocytes. J Bone Miner Res 9: 431–439, 1994

    CAS  PubMed  Google Scholar 

  9. Chung UI, Lanske B, Lee K, Li E, Kronenberg H: The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA 95: 13030–13035, 1998

    Article  CAS  PubMed  Google Scholar 

  10. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC: Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126: 1611–1623, 1994

    Article  CAS  PubMed  Google Scholar 

  11. Tamayama T, Kanbara K, Maemura K, Kuno M, Watanabe M: Localization of GABA, GAD65 and GAD67 in rat epiphyseal growth plate chondrocytes. Acta Histochem Cytochem 34: 201–206, 2001

    Article  Google Scholar 

  12. Owens DF, Kriegstein AR: Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3: 715–727, 2002

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H: GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213: 1–47, 2002

    CAS  PubMed  Google Scholar 

  14. Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, Barker JL: GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 16: 1808–1818, 1996

    CAS  PubMed  Google Scholar 

  15. Spoerri PE: Neurotrophic effects of GABA in cultures of embryonic chick brain and retina. Synapse 2: 11–22, 1988

    Article  CAS  PubMed  Google Scholar 

  16. Tillakaratne NJ, Medina-Kauwe L, Gibson KM: gamma-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol 112: 247–263, 1995

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka C: gamma-Aminobutyric acid in peripheral tissues. Life Sci 37: 2221–2235, 1985

    Article  CAS  PubMed  Google Scholar 

  18. Gilon P, Remacle C, de Varebeke J, Pauwels G, Hoet JJ: GABA content and localisation of high-affinity GABA uptake during the development of the rat pancreas. Cell Mol Biol 33: 573–585, 1987

    CAS  PubMed  Google Scholar 

  19. Gilon P, Reusens-Billen B, Remacle C, Janssens de Varebeke P, Pauwels G, Hoet JJ: Localization of high-affinity GABA uptake and GABA content in the rat duodenum during development. Cell Tissue Res 249: 593–600, 1987

    Article  CAS  PubMed  Google Scholar 

  20. Kuno MW,F M, K, Watanabe M: Expression and characterization of g-aminobutylate and glutamate decarboxylase in rat jejunum: Implication for the proliferation and differentiation of epithelial cells. Bull Osaka Med Coll 47: 27–35, 2001

    CAS  Google Scholar 

  21. Zhang M, Gong YW, Minuk GY: The effects of ethanol and gamma aminobutyric acid alone and in combination on hepatic regenerative activity in the rat. J Hepatol 29: 638–641, 1998

    Article  CAS  PubMed  Google Scholar 

  22. Rabow LE, Russek SJ, Farb DH: From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse 21: 189–274, 1995

    Article  CAS  PubMed  Google Scholar 

  23. Sieghart W: Structure and pharmacology of gamma-aminobutyric acid A receptor subtypes. Pharmacol Rev 47: 181–234, 1995

    CAS  PubMed  Google Scholar 

  24. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B: GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396: 683–687, 1998

    CAS  PubMed  Google Scholar 

  25. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH: Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396: 679–682, 1998

    CAS  PubMed  Google Scholar 

  26. Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP: Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274: 13362–13369, 1999

    CAS  PubMed  Google Scholar 

  27. Atsumi T, Miwa Y, Kimata K, Ikawa Y: A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Diff Dev 30: 109–116, 1990

    CAS  Google Scholar 

  28. Nishigaki F, Sakuma S, Ogawa T, Miyata S, Ohkubo T, Goto T: FK506 induces chondrogenic differentiation of clonal mouse embryonic carcinoma cells, ATDC5. Eur J Pharmacol 437: 123–128, 2002

    CAS  PubMed  Google Scholar 

  29. Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y: Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: Differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133: 457–468, 1996

    CAS  PubMed  Google Scholar 

  30. Shukunami C, Ishizeki K, Atsumi T, Ohta Y, Suzuki F, Hiraki Y: Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro. J Bone Miner Res 12: 1174–1188, 1997

    CAS  PubMed  Google Scholar 

  31. Akinch MK, Schofield PR: Widespread expression of GABAA receptor subunits in peripheral tissues. Neurosci Res 35: 145–153, 1999

    Article  CAS  PubMed  Google Scholar 

  32. Devaud LL, Smith FD, Grayson DR, Morrow AL: Chronic ethanol consumption differentially alters the expression of gamma-aminobutyric acidA receptor subunit mRNAs in rat cerebral cortex: Competitive, quantitative reverse transcriptase-polymerase chain reaction analysis. Mol Pharmacol 48: 861–868, 1995

    CAS  PubMed  Google Scholar 

  33. Luddens H, Pritchett DB, Kohler M, Killisch I, Keinanen K, Monyer H, Sprengel R, Seeburg PH: Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346: 648–651, 1990

    CAS  PubMed  Google Scholar 

  34. Castelli MP, Ingianni A, Stefanini E, Gessa GL: Distribution of GABAB receptor mRNAs in the rat brain and peripheral organs. Life Sci 64: 1321–1328, 1999

    CAS  PubMed  Google Scholar 

  35. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G: GABAA receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101: 815–850, 2000

    CAS  PubMed  Google Scholar 

  36. Calver AR, Medhurst AD, Robbins MJ, Charles KJ, Evans ML, Harrison DC, Stammers M, Hughes SA, Hervieu G, Couve A, Moss SJ, Middlemiss DN, Pangalos MN: The expression of GABAB1 and GABAB2 receptor subunits in the CNS differs from that in peripheral tissues. Neuroscience 100: 155–170, 2000

    CAS  PubMed  Google Scholar 

  37. Minuk GY, Gauthier T: The effect of gamma-aminobutyric acid on hepatic regenerative activity following partial hepatectomy in rats. Gastroenterology 104: 217–221, 1993

    CAS  PubMed  Google Scholar 

  38. Haydar TF, Wang F, Schwartz ML, Rakic P: Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20: 5764–5774, 2000

    CAS  PubMed  Google Scholar 

  39. Fiszman ML, Borodinsky LN, Neale JH: GABA induces proliferation of immature cerebellar granule cells grown in vitro. Brain Res Dev Brain Res 115: 1–8, 1999

    CAS  PubMed  Google Scholar 

  40. Antonopoulos J, Pappas IS, Parnavelas JG: Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur J Neurosci 9: 291–298, 1997

    CAS  PubMed  Google Scholar 

  41. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR: GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15: 1287–1298, 1995

    CAS  PubMed  Google Scholar 

  42. Barker J, Behar T, Ma W, Maric D, Maric I: GABA emerges as a developmental signal during neurogenesis of the rat central nervous system. In: D.L. Martin, R.W. Olsen (eds.). GABA in the Nervous System: The View at Fifty Years. Lippincott Williams and Wilkins, Philadelphia, 2000, pp 245–264

    Google Scholar 

  43. Ben-Yaakov G, Golan H: Cell proliferation in response to GABA in postnatal hippocampal slice culture. Int J Dev Neurosci 21: 153–157, 2003

    CAS  PubMed  Google Scholar 

  44. Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Kohler M, Fujita N, Rodriguez HF, Stephenson A, Darlison MG: Structural and functional basis for GABAA receptor heterogeneity. Nature 335: 76–79, 1988

    Article  CAS  PubMed  Google Scholar 

  45. Araujo F, Ruano D, Vitorica J: Absence of association between delta and gamma2 subunits in native GABAA receptors from rat brain. Eur J Pharmacol 347: 347–353, 1998

    CAS  PubMed  Google Scholar 

  46. Fisher JL, Macdonald RL: Single channel properties of recombinant GABAA receptors containing gamma 2 or delta subtypes expressed with alpha 1 and beta 3 subtypes in mouse L929 cells. J Physiol 505: 283–297, 1997

    CAS  PubMed  Google Scholar 

  47. Erlitzki R, Gong Y, Zhang M, Minuk G: Identification of gamma-aminobutyric acid receptor subunit types in human and rat liver. Am J Physiol Gastrointest Liver Physiol 279: G733–739, 2000

    CAS  PubMed  Google Scholar 

  48. Couve A, Moss SJ, Pangalos MN: GABAB receptors: A new paradigm in G protein signaling. Mol Cell Neurosci 16: 296–312, 2000

    CAS  PubMed  Google Scholar 

  49. Cunningham MD, Enna SJ: Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res 720: 220–224, 1996

    CAS  PubMed  Google Scholar 

  50. Fujimori S, Hinoi E, Yoneda Y: Functional GABAB receptors expressed in cultured calvarial osteoblasts. Biochem Biophys Res Commun 293: 1445–1452, 2002

    CAS  PubMed  Google Scholar 

  51. Onali P, Mascia FM, Olianas MC: Positive regulation of GABAB receptors dually coupled to cyclic AMP by the allosteric agent CGP7930. Eur J Pharmacol 471: 77–84, 2003

    CAS  PubMed  Google Scholar 

  52. Tatsuta M, Iishi H, Baba M, Nakaizumi A, Ichii M, Taniguchi H: Inhibition by gamma-amino-n-butyric acid and baclofen of gastric carcinogenesis induced by N-methyl-N-nitro-N-nitrosoguanidine in Wistar rats. Cancer Res 50: 4931–4934, 1990

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamayama, T., Maemura, K., Kanbara, K. et al. Expression of GABAA and GABAB receptors in rat growth plate chondrocytes: Activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells. Mol Cell Biochem 273, 117–126 (2005). https://doi.org/10.1007/s11010-005-8159-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8159-6

Keywords

Navigation