Skip to main content
Log in

Microbial abundance and community structure in a melting alpine snowpack

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930–2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L−1, 5–30 μg NH4 +-N L−1) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Spizberg, Svalbard. FEMS Microbiol Ecol 59:255–264

    Article  CAS  PubMed  Google Scholar 

  • Bales RC, Sommerfeld RE, Kebler DG (1990) Ionic tracer movement through a Wyoming snowpack. Atmos Environ 24:2749–2758

    Article  Google Scholar 

  • Bauer H, Kaspel-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res 64:109–119

    Article  CAS  Google Scholar 

  • Björkman MP, Zarsky JP, Kühnel R, Hodson A, Sattler B, Psenner R (2014) Microbial cell retention in a melting high Arctic snowpack, Svalbard. Arct Antarct Alp Res 46:471–482

    Article  Google Scholar 

  • Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borneman J, Hardin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowman DW (1992) Inputs and storage of nitrogen in winter snowpack in an alpine ecosystem. Arct Antarct Alp Res 24:211–215

    Article  Google Scholar 

  • Brankatschk R, Töwe S, Kleineidam K, Schloter M, Zeyer J (2010) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037

    Article  PubMed Central  PubMed  Google Scholar 

  • Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280

    Article  CAS  Google Scholar 

  • Christner BC, Morris CE, Foreman CM, Cai R, Sands DC (2008) Ubiquity of biological ice nucleators in snowfall. Science 319:1214

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Kirchner JW, Renshaw CE, Osterhuber RS, Klaue B, Taylor S (2001) A study of solute transport mechanisms using rare earth element tracers and artificial rainstorms on snow. Water Resour Res 37:1425–1435

    Article  CAS  Google Scholar 

  • Grannas AM, Jones AE, Dibb J et al (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys 7:4329–4373

    Article  CAS  Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauptmann AL, Stibal M, Bælum J, Sicheritz-Pontén T, Brunak S, Bowman JS, Hansen LH, Jacobsen CSm, Blom N (2014) Bacterial diversity in snow on north pole ice floes. Extremophiles 18:945–951

    Article  PubMed Central  PubMed  Google Scholar 

  • Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B (2013) The dynamic bacterial communities of a melting high arctic glacier snowpack. ISME J 7:1814–1826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horton RE (1935) Phenomena of the contact zone between the ground surface and a layer of melting snow. IAHS AISH Publ 23:545–561

    Google Scholar 

  • Jones HG (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Kamande GM, Baah J, Cheng KJ, McAllister TA, Shelford JA (2000) Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes. J Dairy Sci 83:536–542

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Kim IH, Hou CT, Kwon KI, Shin BS (2010) Production of a novel cold-active lipase from Pichia lynferdii Y-7723. J Agric Food Chem 58:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Körner C (1999) Alpine plant life. Springer, Berlin

  • Larose C, Berger S, Ferrari C, Navarro Em Dommergue A, Schneider D, Vogel TM (2010) Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles 14:05–212

    Article  Google Scholar 

  • Larose C, Dommergue A, Vogel TM (2013) The dynamic Arctic snow pack: an unexplored environment for microbial diversity and activity. Biology 2:317–330

    Article  PubMed Central  PubMed  Google Scholar 

  • Lautenschlager K, Hwang C, Liu WT, Boon N, Köster O, Vrouwenvelder H, Egli T, Hammes F (2013) A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Res 47:3015–3025

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro A, Abegg C, Zeyer J (2009) Bacterial community structure of glacier forefields of siliceous and calcareous bedrock. Eur J Soil Sci 60:860–870

    Article  CAS  Google Scholar 

  • Lee J, Nez VE, Feng X, Kirchner JW, Opsterhuber R, Renshaw CE (2008) A study of solute redistribution and transport in seasonal snowpack using natural and artificial tracers. J Hydrol 357:243–254

    Article  Google Scholar 

  • Legrand M, Preunkert S, Jourdain B, Guilhermet J, Faijn X, Alekhina I, Petit JR (2013) Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Clim Past 9:2195–2211

    Article  Google Scholar 

  • Liu Y, Yao T, Jiao N, Kang S, Xu B, Zeng Y, Huang S, Liu X (2009) Bacterial diversity in the snow over Tibetan Plateau glaciers. Extremophiles 13:411–423

    Article  CAS  PubMed  Google Scholar 

  • Lo Giudice A, Michaud L, de Pascale D, De Domenico M, di Prisco G, Fani R, Bruni V (2006) Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea). J Appl Microbiol 101:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Lovett GM, Kinsman JD (1990) Atmospheric pollutant deposition to high-elevation ecosystems. Atmos Environ 11:2767–2786 (part A, general topics)

  • Lütz C (2010) Cell physiology of plants growing in cold environments. Protoplasma 244:53–73

    Article  PubMed  Google Scholar 

  • Maccario L, Vogel TM, Larose C (2014) Potential drivers of microbial community structure and function in Arctic spring snow. Front Microbiol 5:1–10

    Article  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    Article  CAS  Google Scholar 

  • Mayr C, Miller M, Insam H (1999) Elevated CO alters community-level physiological profiles and enzyme activities in alpine grassland. J Microbiol Methods 36:35–43

    Article  CAS  PubMed  Google Scholar 

  • McNeill VF, Grannas AM, Abbatt JPD, Ammann M, Ariya P, Bartels-Rausch T, Domine F et al (2012) Organics in environmental ices: sources, chemistry, and impacts. Atmos Chem Phys 12:9653–9678

    Article  CAS  Google Scholar 

  • Meola M, Lazzaro A, Zeyer J (2014) Diversity, resistance, and resilience of the bacterial communities at two alpine glacier forefields after a reciprocal soil transplantation. Environ Microbiol 16:1918–1934

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Wania F (2008) Organic contaminant amplification during snowmelt. Water Res 42:1847–1865

    Article  CAS  PubMed  Google Scholar 

  • Meyer AF, Lipson DA, Martin AP, Shadt CW, Schmidt SK (2004) Molecular and Metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol 70:483–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mladenov N, Williams MW, Schmidt SK, Cawley K (2012) Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeoscience 9:3337–3355

    Article  CAS  Google Scholar 

  • Møller AK, Da S, Al-Soud A, Sørensen SJ, Kroer N (2013) Bacterial community structure in high-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation. Pol Res 32:17390. doi:10.3402/polar.v32i0.17390

  • Mulvaney RL (1996) Nitrogen-inorganic forms. In: American Society of Agronomy (ed) Methods of soil analysis, part 3, pp 1123–1184. Soil Science Society of America, Madison

  • Oksanen J, Kindt R, O’Hara RB (2005) Vegan: community ecology package version 1, pp 6–9. http://cc.oulu.fi/~jarioksa/

  • Pinzer BR, Medebach A, Limbach HJ, Dubois C, Stampanoni M, Schneebeli M (2012) 3D-characterization of three-phase systems using X-ray tomography: tracking the microstructural evolution in ice cream. Soft Matter 8:4584

    Article  Google Scholar 

  • Polymenakou PN (2012) Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3:87–102

    Article  Google Scholar 

  • Pomeroy JW, Brun E (2001). In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Physical properties of snow. Snow ecology: an interdisciplinary examination of snow-covered ecosystems, pp 45–118. Cambridge University Press, Cambridge

  • Pomeroy JW, Jones HG, Tranter M, Lilbaek G (2005) Snow and glacier hydrology. In: Anderson MG, Mcdonnell JJ (eds) Encyclopedia of hydrological sciences. Wiley, Oxford, pp 2525–2538

    Google Scholar 

  • Remias D, Karsten U, Lütz C, Leya T (2010) Physiological and morphological processes in the alpine sow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73–86

    Article  PubMed  Google Scholar 

  • Reysenbach AL, Longnecker K, Kirshte J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-Atlantic ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Runa A, Grannas AM, Willoughby AS, Sleighter RL, Thamban M, Hatcher PG (2014) Origin and sources of dissolved organic matter in snow on the east Antarctic ice sheet. Environ Sci Technol 48:6151–6159

    Article  Google Scholar 

  • Schneebeli M (1995) In: Association of the Hydrological Sciences (eds) Development and stability of preferential flow paths in a layered snowpack, vol 22, pp 89–96. IAHS Publications-Series of Proceedings and Reports-Intern, Wallingford

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stelmach IP, De Oliveira Elias S, Lorenz Simöes F, Cardia Simöes J, Macedo AJ (2012) Functional diversity of microbial communities in soils in the vicinity of Wanda Glacier, Antarctic Peninsula. Micro Environ 27:200–203

    Article  Google Scholar 

  • Steltzer H, Landry C, Painter TH, Anderson J, Ayres E (2009) Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. PNAS 106:11629–11634. doi:10.1073/pnas.0900758106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stibal M, Bælum J, Holben WH, Sørensen SR, Jensen A, Jacobsen CS (2012) Microbial degradation of 2, 4-dichlorophenoxyacetic acid on the Greenland ice sheet. Appl Environ Microbiol 78:5070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N, Nakano K, Matsumura M (2003) Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Sist Evol Microbiol 53:519–526

    Article  CAS  Google Scholar 

  • Techel F, Pielmeier C, Schneebeli M (2011) Microstructural resistance of snow following first rewetting. Cold Reg Sci Technol 65:382–391

    Article  Google Scholar 

  • Thimonier A, Schmitt M, Waldner P, Rihm B (2005) Atmospheric deposition on swiss long-term forest ecosystem research (LWF) plots. Environ Monit Assess 104:81–118

    Article  CAS  PubMed  Google Scholar 

  • Tranter M, Davies TD, Abrahams PW, Blackwood I, Brimblecombe P, Vincent CE (1986) Spatial variability in the chemical composition of snowcover in a small, remote, Scottish catchment. Atmos Environ 21:853–862

    Article  Google Scholar 

  • Waldner PA, Schneebeli M, Schulze-Zimmermann U, Flühler H (2004) Effect of snow structure on water flow and solute transport. Hydrol Proc 18:1271–1290

    Article  Google Scholar 

  • Walter B, Horender S, Gromke C, Lehning M (2013) Measurements of the pore-scale water flow through snow using fluorescent particle tracking velocimetry (FPTV). Water Resour Res. doi:10.1002/2013WR013960

    Google Scholar 

  • Williams MW, Seibold C, Chowanski K (2009) Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response, Niwot Ridge, Colorado. Biogeochemistry 95:77–94

    Article  CAS  Google Scholar 

  • Winsley T, van Dorst JM, Brown MV, Ferrari BC (2012) Capturing greater 16S rRNA gene sequence diversity within the domain bacteria. Appl Environ Microbiol 78:5938–5941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Womack AM, Bohannan BJ, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos Trans R Soc B 365:3645–3653

    Article  Google Scholar 

  • Xiang SR, Shang TC, Chen Y, Yao TD (2009) Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol Ecol 70:165–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Martin Schroth, Alessandro Franchini and Marco Meola for exchange of ideas and for help in the field. We thank Tobias Jonas at WSL Davos for providing meteorological data. We are extremely grateful to Frederik Hammes at EAWAG (Dübendorf, Switzerland) for support on flow cytometry. T-RFLP profiling was performed at the Genetic diversity centre (GDC) of ETH Zurich. TC analysis of the glass fibre filters was provided by Bachema AG (Schlieren, Switzerland). This project was internally funded by ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lazzaro.

Additional information

Communicated by M. da Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzaro, A., Wismer, A., Schneebeli, M. et al. Microbial abundance and community structure in a melting alpine snowpack. Extremophiles 19, 631–642 (2015). https://doi.org/10.1007/s00792-015-0744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0744-3

Keywords

Navigation