Skip to main content
Log in

Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Amongst a specialised group of psychrophilic microalgae that have adapted to thrive exclusively in summer snow fields, Chloromonas nivalis has been reported as a species causing green, orange or pink blooms in many alpine and polar regions worldwide. Nevertheless, the cytology, ecophysiology and taxonomy of this species are still unresolved. Intracellular processes during cyst formation, which is the dominant stage on snow fields, were examined with samples from the European Alps to better understand the cellular strategies of a green alga living in this harsh habitat. We show with two different methods, i.e. oxygen optode fluorometry and by chlorophyll fluorescence, that the cysts are photosynthetically highly active, although they do not divide, and that Chloromonas nivalis can cope with low as well as high light conditions. During cyst formation, the chloroplast is fragmented into several smaller parts, enlarging the surface to volume ratio. The pool of xanthophyll-cycle pigments is significantly enlarged, which is different from other snow algae. The cytoplasm is filled with lipid bodies containing astaxanthin, a secondary carotenoid that causes the typical orange colour. The cyst wall surface possesses characteristic elongate flanges, which are assembled extracellulary by accumulation of material in the periplasmatic interspace. Comparison of Chloromonas nivalis samples from different locations (Austrian Alps, Spitsbergen) by molecular methods indicates genetic variations due to spatial isolation, while a North American strain has no close relationship to the taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LM:

light microscopy

MAA:

mycosporin-like amino acid

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

VAZ:

violaxanthin, antheraxanthin and zeaxanthin

References

  • Bidigare RR, Ondrusek ME, Kennicutt MC II, Iturriaga R, Harvey HR, Hoham RW, Macko SA (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol 29:427–434

    Article  CAS  Google Scholar 

  • Bischoff Y (2008) Diversité et mobilité des algues de neige dans les Alpes suisses. Dissertation, University of Geneva, p. 132

  • Brown RM, Johnson SC, Bold HC (1968) Electron and phase-contrast microscopy of sexual reproduction in Chlamydomonas moewusii. J Phycol 4:100–120

    Article  Google Scholar 

  • Buchner O, Lütz C, Holzinger A (2007) Design and construction of a new temperature controlled chamber for light- and confocal microscopy under monitored conditions: biological application for plant samples. J Microsc 225:183–191

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1976) Electron microscopy of zygospore formation in Chlamydomonas reinhardii. Protoplasma 87:297–315

    Article  CAS  PubMed  Google Scholar 

  • Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to light. J Appl Phycol 11:559–566

    Google Scholar 

  • Ettl H (1968) Ein beitrag zur kenntnis der algenflora tirols. Ber nat-med Ver Innsbruck 56:177–354

    Google Scholar 

  • Ettl H (1983) Chlorophyta I. Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol. 9. Gustav Fischer, Stuttgart, p 807

    Google Scholar 

  • Gorton HL, William WE, Vogelmann TC (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol 73:611–620

    Article  CAS  PubMed  Google Scholar 

  • Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226

    Article  Google Scholar 

  • Hanagata N (1998) Phylogeny of the subfamily Scotiellocystoideae (Chlorophyceae, Chlorophyta) and related taxa inferred from 18 s ribosomal rna gene sequence data. J Phycol 34:1049–1054

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hancke TB, Hancke K, Johnsen G, Sakshaug E (2008) Rate of O2 production derived from pulse-amplitude-modulated fluorescence: testing three biooptical approaches against measured O2 production rate. J Phycol 44:803–813

    Article  CAS  Google Scholar 

  • Harris EH (2009) The Chlamydomonas sourcebook. Volume 1: introduction to Chlamydomonas and its laboratory use, 2nd edn. Academic Press, Oxford, p 444

    Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Hepler PK, Newcomb EH (1964) Microtubules and fibrils in the cytoplasm of Coleus cells undergoing secondary wall deposition. J Cell Biol 20:529–533

    Article  CAS  PubMed  Google Scholar 

  • Hoham RW, Blinn DW (1979) Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia 18:133–145

    Google Scholar 

  • Hoham RW, Mullet JE (1977) The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales). Phycologia 16:53–68

    Google Scholar 

  • Hoham RW, Mullet JE (1978) Chloromonas nivalis (Chod.) Hoh. & Mull. Comb. Nov., and additional comments on the snow alga, Scotiella. Phycologia 17:106–107

    Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones et al (eds) Snow ecology. Cambridge University Press, New York, pp 168–228

    Google Scholar 

  • Hoham RW, Roemer SC, Mullet JE (1979) The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia 18:55–70

    Google Scholar 

  • Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperate habitats. J Phycol 38:1051–1064

    Article  CAS  Google Scholar 

  • Hoham RW, Berman JD, Rogers HS, Felio JH, Ryba JB, Miller PR (2006) Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 45:319–330

    Article  Google Scholar 

  • Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207

    Article  PubMed  Google Scholar 

  • Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566

    Article  CAS  Google Scholar 

  • Karsten U, Escoubeyrou K, Charles F (2009) The effect of redissolution solvents and HPLC columns on the analysis of mycosporine-like amino acids (MAAs) in the macroalgal species Prasiola crispa and Porphyra umbilicalis. Helgol Mar Res 63:231–238

    Article  Google Scholar 

  • Kol E (1968) Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In: Elster HJ, Ohle W (eds) Die Binnengewässer, Band XXIV. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 216

    Google Scholar 

  • Kol E (1970) Vom roten Schnee der Tiroler Alpen. Ann Hist-Nat Mus Natl Hung 62:129–136

    Google Scholar 

  • Komárek J, Nedbalová L (2007) Green cryosestic algae. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology (volume 11): algae and cyanobacteria in extreme environments, part 4: phototrophs in cold environments. Springer, Dordrecht, pp 323–344

    Google Scholar 

  • Kromkap JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Article  Google Scholar 

  • Kvíderova J, Stibal M, Nedbalová L, Kaštovská K (2005) The first record of snow algae vitality in situ by variable fluorescence of chlorophyll. Fottea 5:69–77

    Google Scholar 

  • Leslie GA (2009) Natural products in plants: chemical diversity. In: Begley TP (ed) Wiley Encyclopedia of Chemical Biology, vol. 3. Willey, Hoboken, N.J., pp 261–277

    Google Scholar 

  • Leya T (2004) Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. Dissertation. Shaker, Aachen, p 145

    Google Scholar 

  • Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  • Liaaen-Jensen S, Lutnæs BJ (2008) E/Z isomers and isomerization. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, volume 4: natural functions. Birkhäuser, Basel, pp 15–36

    Chapter  Google Scholar 

  • Ling HU, Seppelt RD (1998) Snow algae of the Windmill Islands, continental Antarctica. 3. Choloromonas polyptera (Volvocales, Chlorophyta). Polar Biol 20:320–324

    Article  Google Scholar 

  • Lukavský J (1993) First record of cryoseston in the Bohemian Forest Mts. (Šumava). Algological Stud 69:83–89

    Google Scholar 

  • Lukavský J, Furnadzhieva S, Nedbalová L (2009) First record of cryoseston in the Vitosha Mountains (Bulgaria). Nova Hedwigia 88:97–109

    Article  Google Scholar 

  • Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20:585–594

    Article  Google Scholar 

  • Masojidek J, Kopecký J, Kobližek M, Torzillo G (2004) The xanthophyll cycle in green algae (Chlorophyta): its role in the photosynthetic apparatus. Plant Biology 6:342–349

    Google Scholar 

  • Müller T, Bleiß W, Martin CD, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32

    Article  Google Scholar 

  • Muramoto K, Kato S, Shitara T, Hara Y, Nozaki H (2008) Morphological and genetic variation in the cosmopolitan snow alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese mountainous area. Cytologia 73:91–96

    Article  CAS  Google Scholar 

  • Nedbalová L, Kociánová M, Lukavský J (2008) Ecology of snow algae in the Giant Mts. Opera Corcon 45:59–68

    Google Scholar 

  • Novis PM, Hoham RW, Beer T, Dawson M (2008) Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): ultrastructure and phylogenetic position within the Chloromonas clade. J Phycol 44:1001–1012

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Pröschold T, Marin B, Schlösser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152:265–300

    Article  PubMed  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    Google Scholar 

  • Remias D, Lütz C (2007) Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algological Stud 124:85–94

    Article  CAS  Google Scholar 

  • Remias D, Holzinger A, Lütz C (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302–312

    Article  Google Scholar 

  • Řezanka T, Nedbalová L, Sigler K, Cepák V (2008) Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Phytochemistry 69:479–490

    Article  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Stibal M (2003) Ecological and physiological characteristics of snow algae from Czech and Slovak mountains. Fottea (Czech Phycology) 3:141–152

    Google Scholar 

  • Stibal M, Elster J, Šabacká M, Kaštovská K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 59:265–273

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    Google Scholar 

  • Tschaikner A, Ingolić E, Stoyneva MP, Gärtner G (2007) Autosporulation in the soil alga Coelastrella terrestris (Chlorophyta, Scenedesmaceae, Scenedesmoideae). Phytol Balc 13:29–34

    Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecol 17:281–291

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Institute of Ecology, University of Innsbruck, for admittance to their Limnological Field Station at Lake Gossenkölle (Tyrol) and the Austrian Science Fund FWF (Project 200810 to C. L.) for support. U. K. thanks the Deutsche Forschungsgemeinschaft (KA 899/16-1) for a grant which supported his sabbatical at the University of Innsbruck. T. L. also is indebted to the Deutsche Forschungsgemeinschaft for funding his snow algal research (LE 1275/2-2). Furthermore, we thank Hans Wastian and Siegfried Aigner for assistance in the field, Werner Kofler for the SEM image generation, Belina DeCarli for TEM sectioning and image creation, Thomas Pröschold for providing the gene sequence of strain CCCryo 154-01 as well as Christian Wiencke (AWI Bremerhaven) for lending the PAM.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Remias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

List of algal strains used in this study, either from CCCryo or from field samples. Cd Dunaliella tertiolecta Chlamydomonas, Cr Chloromonas, nd not determined, na not available, question mark clade association unclear (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remias, D., Karsten, U., Lütz, C. et al. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010). https://doi.org/10.1007/s00709-010-0123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0123-y

Keywords

Navigation