Skip to main content

Advertisement

Log in

Cell physiology of plants growing in cold environments

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0°C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of UV. Thus, their defense and antioxidant role dominates. Ultrastructural comparisons were unable to find special light adaptations in plants taken from polar regions vs. high alpine species. The only adaptation found at the subcellular level for most alpine and polar plants are protrusions of the chloroplast envelopes. They are seen as a demand for fast membrane transport requiring additional membrane surface area, whereby the increase in stroma volume may help to support carbohydrate formation. Plants forming such protrusions have to cope with a short vegetation time. These observations are connected to the question as to how photosynthesis works quite well even at or under zero temperatures. The interplay between plastids, mitochondria, and peroxisomes, known as photorespiration, seems to be more intense than in lowland plants. This organelle cooperation serves as a valve for a surplus in solar energy input under cold conditions. Additional metabolic acclimations are under investigation, such as the role of an alternative plastid terminal oxidase. Plants from cold environments may also be seen as ideal objects for studying the combined effects of high light plus cold resistance—from the molecular level to the whole plant adaptation. Modern instrumentation makes it possible to perform vital metabolic measurements under outdoor conditions, and research stations in remote polar and alpine areas provide support for scientists in the preparation of samples for later cellular studies in the home laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HSP:

Heat shock protein(s)

PAR:

Photosynthetic active radiation

TEM:

Transmission electron microscopy

References

  • Alberdi M, Corcuera LJ (1991) Cold acclimation in plants. Phytochemistry 30:3177–3184

    Article  CAS  Google Scholar 

  • Albert KR, Mikkelsen TN, Ro-Poulsen H (2008) Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum. Physiol Plant 133:199–210

    Article  PubMed  CAS  Google Scholar 

  • Almeida JM, Fidalgo F, Confraria A, Santos A, Pires H, Santos I (2005) Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Funct Plant Biol 32:707–720

    Article  CAS  Google Scholar 

  • Arimura S, Hirai A, Tsutsumi N (2001) Numerous and highly developed tubular projections from plastids observed in tobacco epidermal cells. Plant Sci 160:449–454

    Article  PubMed  CAS  Google Scholar 

  • Baptist F, Tcherkez G, Aubert S, Pontailler J-Y, Choler P, Nogués S (2009) 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J Exp Bot 60(9):2725–2735

    Article  PubMed  CAS  Google Scholar 

  • Bartolo ME, Carter JV (1991) Microtubules in mesophyll cells of nonacclimated and cold-acclimated spinach. Plant Physiol 97:175–181

    Article  PubMed  CAS  Google Scholar 

  • Bergweiler P (1987) Charakterisierung von Bau und Funktion der Photosynthese-Membranen ausgewählter Pflanzen unter den Extrembedingungen des Hochgebirges. Dissertation, Universität Köln (Prof. Lütz)

  • Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photoch Photobio Sci 6:190–195

    Article  CAS  Google Scholar 

  • Billings WD (1974) Adaptations and origins of alpine plants. Arct Alp Res 6(2):129–142

    Article  Google Scholar 

  • Billings WD, Godfrey PJ, Chabot BF, Bourque DP (1971) Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. Arct Alp Res 3(4):277–289

    Article  Google Scholar 

  • Björn LO, Callaghan TV, Gehrke C, Gwynn-Jones D, Lee JA, Johanson U, Sonesson M, Buck ND (1999) Effects of ozone depletion and increased ultraviolet-B radiation on northern vegetation. Polar Res 18(2):331–337

    Article  Google Scholar 

  • Blagowestschenski WA (1935) Über den Verlauf der Photosynthese im Hochgebirge des Pamirs. Planta 24(2):276–287

    Article  Google Scholar 

  • Block MA, Douce R, Joyard J, Rolland N (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92:225–244

    Article  PubMed  CAS  Google Scholar 

  • Blumthaler M (2007) Factors, trends and scenarios of UV radiation in arctic-alpine environments. In: Oerbaeck JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) Arctic alpine ecosystems and people in a changing environment. Springer, Berlin

    Google Scholar 

  • Blumthaler M, Webb AR, Seckmeyer G, Bais AF, Huber M, Mayer B (1994) Simultaneous spectroradiometry: a study of solar UV irradiance at two altitudes. Geophys Res Lett 21:2805–2808

    Article  Google Scholar 

  • Blumthaler M, Ambach A, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39:130–134

    Article  CAS  Google Scholar 

  • Bourett TM, Czymmek KJ, Howard RJ (1999) Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208:472–479

    Article  CAS  Google Scholar 

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56(414):1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Ulloa N, Zuñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    Article  CAS  Google Scholar 

  • Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov AG, Huner NPA, Corcuera LJ (2007) Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth.) Bartl. J Exp Bot 58(13):3581–3590

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Bascuñán-Goday L, Pérez-Torres E, Corcuera LJ (2009) Cold hardiness in Antarctic vascular plants. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness from the laboratory to the field. CABI, Oxfordshire

    Google Scholar 

  • Buchner O, Neuner G (2003) Variability of heat tolerance in alpine plant species measured at different altitudes. Arct Antarct Alp Res 35(4):411–420

    Article  Google Scholar 

  • Buchner O, Holzinger A, Lütz C (2007a) Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ 30:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Buchner O, Lütz C, Holzinger A (2007b) Design and construction of a new temperature-controlled chamber for light and confocal microscopy under monitored conditions: biological applications for plant samples. J Microsc 225(2):183–191

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    Article  PubMed  CAS  Google Scholar 

  • Casanova-Katny MA, Bravo LA, Molina-Montenegro M, Corcuera LJ, Cavieres LA (2006) Photosynthetic performance of Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in a high-elevation site of the Andes of central Chile. Rev Chil Hist Nat 79:41–53

    Article  Google Scholar 

  • Chabot BF, Chabot JF, Billings WD (1972) Ribulose-1, 5-diphosphate carboxylase activity in Arctic and Alpine populations of Oxyria digyna. Photosynthetica 6(4):364–369

    CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Crawford RMM (2001) Plant survival in the changing climates of the high arctic. Bull Classe des Sciences, Acad Royale Belgique, Bruxelles 249–264

  • Crawford RMM (2008) Plants at the margin. Ecological limits and climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Crawford RMM, Chapman HM, Hodge H (1994) Anoxia tolerance in high Arctic vegetation. Arct Alpine Res 26:308–312

    Article  Google Scholar 

  • Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119:24–35

    Article  Google Scholar 

  • De Carli S (2008) Einfluss des jahreszeitlichen Klimas auf Ultrastruktur und wichtige Inhaltsstoffe in den Blättern von Loiseleuria procumbens L. (Desv.). Dissertation, Universität Innsbruck

  • Döhring T, Köfferlein M, Thiel S, Seidlitz HK (1996) Spectral shaping of artificial UV-B irradiation for vegetation stress research. J Plant Physiol 148:115–119

    Google Scholar 

  • Edwards JA, Lewis Smith RI (1988) Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Brit Antarct Surv Bull 81:43–63

    Google Scholar 

  • Engel L, Fock H, Schnarrenberger C (1986a) CO2 and H2O gas exchange of the high alpine plant Oxyria digyna (L.) HILL 1. Irradiance and temperature dependence. Photosynthetica 20(3):293–303

    Google Scholar 

  • Engel L, Fock H, Schnarrenberger C (1986b) CO2 and H2O gas exchange of the high alpine plant Oxyria digyna (L.) HILL 2. Response to high irradiance stress and supraoptimal leaf temperatures. Photosynthetica 20(3):304–314

    Google Scholar 

  • Engel N, Schmidt M, Lütz C, Feierabend J (2006) Molecular identification, heterologous expression and properties of light-intensive plant catalases. Plant Cell Environ 29:593–607

    Article  PubMed  CAS  Google Scholar 

  • Freeman TP, Duysen ME (1975) The effect of imposed water stress on the development and ultrastructure of wheat chloroplasts. Protoplasma 83:131–145

    Article  Google Scholar 

  • Germino M, Smith WK (2000) High resistance to low-temperature photoinhibition in two alpine, snowbank species. Physiol Plant 110:89–95

    Article  CAS  Google Scholar 

  • Gidekel M, Destefano-Beltrán L, García P, Mujica L, Leal P, Cuba M, Fuentes L, Bravo LA, Corcuera LJ, Alberdi M, Concha I, Gutiérrez A (2003) Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 7:459–469

    Article  PubMed  CAS  Google Scholar 

  • Gielwanowska I, Szczuka E (2005) New ultrastructural features of organelles in leaf cells of Deschampsia antarctica Desv. Polar Biol 28:951–955

    Article  Google Scholar 

  • Giełwanowska I, Szczuka E, Bednara J, Górecki R (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96:1109–1119

    Article  PubMed  Google Scholar 

  • Gorton HL, Williams WE, Vogelmann TC (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol 73:611–620

    Article  PubMed  CAS  Google Scholar 

  • Gray JC, Sullivan JA, Hibberd JM, Hansen MR (2001) Stromules: mobile protrusions and interconnections between plastids. Plant Biol 3:223–233

    Article  CAS  Google Scholar 

  • Griffith M, Timonin M, Wong ACE, Gray GR, Akhter SR, Saldanha M, Rogers MA, Weretilnyk EA, Moffatt B (2007) Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Plant Cell Environ 30:529–538

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES (2005) Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, and tip-shedding. Protoplasma 225:33–42

    Article  PubMed  Google Scholar 

  • Gusta LV, Wisniewski ME, Trischuk RG (2009a) Patterns of freezing in plants: the influence of species, environment and experimental procedures. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness from the laboratory to the field. CABI, Oxfordshire

    Chapter  Google Scholar 

  • Gusta LV, Wisniewski ME, Tanino KK (eds) (2009b) Plant cold hardiness from the laboratory to the field. CABI, Oxfordshire

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    CAS  Google Scholar 

  • Hacker J, Neuner G (2008) Ice propagation in dehardened alpine plant species studied by infrared differential thermal analysis (IDTA). Arct Antarct Alp Res 40:660–670

    Article  Google Scholar 

  • Hacker J, Spindelböck JP, Neuner G (2008) Mesophyll freezing and effects of freeze dehydration visualized by simultaneous measurement of IDTA and differential imaging chlorophyll fluorescence. Plant Cell Environ 31:1725–1733

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Bligny R, Streb P, Douce R (1996) Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinhibition under sunlight. Bot Acta 109:307–315

    CAS  Google Scholar 

  • Henrici M (1918) Chlorophyllgehalt und Kohlensäure-Assimilation bei Alpen- und Ebenen-Pflanzen. Verh Naturforsch Ges Basel 30:43–136

    Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228

    Google Scholar 

  • Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207

    Article  PubMed  Google Scholar 

  • Holzinger A, Wasteneys G, Lütz C (2007a) Investigating cytoskeletal function in chloroplast protrusion formation in the Arctic–alpine plant Oxyria digyna. Plant Biol 9:400–410

    Article  PubMed  CAS  Google Scholar 

  • Holzinger A, Buchner O, Lütz C, Hanson MR (2007b) Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. Protoplasma 230:23–30

    Article  PubMed  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47(296):291–305

    Article  CAS  Google Scholar 

  • Huiskes AHL, Lud D, Moerdijk-Poortvliet TCW, Rozema J (1999) Impact of UV-B radiation on Antarctic terrestrial vegetation. In: Rozema J (ed) Stratospheric ozone depletion; the effects of enhanced UV-B radiation on terrestrial ecosystems. Backhuys, Leiden, pp 313–337

    Google Scholar 

  • Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature in cold tolerant plants. Photosynth Res 37:19–39

    Article  CAS  Google Scholar 

  • Hurry V, Tobiaeson M, Krömer S, Gardeström P, Öquist G (1995) Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale cereale L.) following cold-hardening. Plant Cell Environ 18:69–76

    Article  Google Scholar 

  • Jones HG, Demmers-Derks HHWM (1999) Photoinhibition as a factor in altitudinal for latitudinal limits of species. Phyton 39(4):91–98

    CAS  Google Scholar 

  • Kaniuga Z (2008) Chilling response of plants: importance of galactolipase, free fatty acids and free radicals. Plant Biol 10:171–184

    Article  PubMed  CAS  Google Scholar 

  • Karentz D (2003) Environmental change in Antarctica: ecological impacts and responses. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 45–55

    Google Scholar 

  • Karlson D, Nakaminani K, Thompson K, Yang Y, Chaikam V, Mulinti P (2009) Plant cold shock proteins: on the tip of an iceberg. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness from the laboratory to the field. CABI, Oxfordshire

    Google Scholar 

  • Kaurola J, Taalat P, Koskela T, Borkowski J, Josefsson W (2000) Long-term variations of UV-B doses at three stations in northern Europe. J Geophys Res 105:20813–20820

    Article  Google Scholar 

  • Kirchhoff VWJH, Echer E (2001) Erythema UV-B exposure near the Antarctic Peninsula and comparison with an equatorial site. J Photochem Photobiol B 60:102–107

    Article  PubMed  CAS  Google Scholar 

  • Köhler RH, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113:81–89

    PubMed  Google Scholar 

  • Köhler RH, Cao J, Zipfel W, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  PubMed  Google Scholar 

  • Körner C (1982) CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53:98–104

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner C (2006) Significance of temperature in plant life. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell, Oxford

    Google Scholar 

  • Körner C, Woodward FI (1987) The dynamics of leaf extension in plants with diverse altitudinal ranges. II. Field studies in Poa species between 600m and 3200m altitude. Oecologia 72:279–283

    Article  Google Scholar 

  • Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60(12):3595–3609

    Article  PubMed  CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Larcher W (1980) Klimastreß im Gebirge—Adaptionstraining und Selektionsfilter für Pflanzen. Rhein Westf Akad Wiss 291:49–88

    Google Scholar 

  • Larcher W (1987) Streß bei Pflanzen. Naturwissenschaften 74:158–167

    Article  CAS  Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pflanzen, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374

    Google Scholar 

  • Larcher W, Wagner J (2009) High mountain bioclimate: temperatures near the ground recorded from the timberline to the nival zone in the Central Alps. Contrib Nat Hist 12:857–874

    Google Scholar 

  • Larcher W, Wagner J, Lütz C (1997) Effect of heat on photosynthesis, dark respiration and cellular ultrastructure of the Arctic–alpine psychrophyte Ranunculus glacialis. Photosynthetica 34:219–232

    Article  CAS  Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Google Scholar 

  • Lee H, Cho HH, Kim I-C, Yim JH, Lee HK, Lee YK (2008) Expressed sequence tag analysis of Antarctic hairgrass Deschampsia antarctica from King George Island, Antarctica. Mol Cells 25(2):258–264

    PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Vol. I. Academic, New York

    Google Scholar 

  • Leya T, Müller T, Ling HU, Fuhr G (2001) Psychrophilic microalgae from north-west Spitsbergen, Svalbard: their taxonomy, ecology and preliminary studies of their cold adaptation using single cell electrorotation. Nova Hedwig Beih 123:551–570

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    CAS  Google Scholar 

  • Lud D, Huiskes AHL, Moerdijk TCW, Rozema J (2001) The effect of altered levels of UV-B radiation on an Antarctic grass and lichen. Plant Ecol 154:89–99

    Article  Google Scholar 

  • Lütz C (1987) Cytology of high alpine plants II. Microbody activity in leaves of Ranunculus glacialis L. Cytologia 52:679–686

    Google Scholar 

  • Lütz C (1996) Avoidance of photoinhibition and examples of photodestruction in high alpine Eriophorum. J Plant Physiol 148:120–128

    Google Scholar 

  • Lütz C, Engel L (2007) Changes in chloroplast ultrastructure in some high alpine plants: adaptation to metabolic demands and climate? Protoplasma 231:183–192

    Article  PubMed  Google Scholar 

  • Lütz C, Gülz P-G (1985) Comparative analysis of epicuticular waxes from some high alpine plant species. Z Naturforsch 40c:599–605

    Google Scholar 

  • Lütz C, Holzinger A (2004) A comparative analysis of photosynthetic pigments and tocopherol of some Arctic–alpine plants from the Kongsfjord area, Spitzbergen, Norway. In: Wiencke Ch (ed) Reports on polar research, vol 492. AWI, Bremerhaven, pp 114–122

    Google Scholar 

  • Lütz C, Moser W (1977) Beiträge zur Cytologie hochalpiner Pflanzen. I. Untersuchungen zur Ultrastruktur von Ranunculus glacialis L. Flora 166:21–34

    Google Scholar 

  • Lütz C, Schönauer E, Nenuer G (2005) Physiological adaptation before and after snow melt in green overwintering leaves of some high alpine plants. Phyton (Austria) 45(3):139–156

    Google Scholar 

  • Lütz C, Blassnigg M, Remias D (2008) Different flavonoid patterns in Deschampsia antarctica and Colobanthus quitensis from the maritime Antarctic. In: Wiencke Ch et al (eds) Reports on polar and marine research, vol 571. AWI, Bremerhaven, pp 192–199

    Google Scholar 

  • Mantovani A, Vieira RC (2000) Leaf micromorphology of Antarctic pearlwort Colobanthus quitensis (Kunth) Bartl. Polar Biol 23:531–538

    Article  Google Scholar 

  • Manuel N, Cornic G, Aubert S, Choler P, Bligny R, Heber U (1999) Protection against photoinhibition in the alpine plant Geum montanum. Oecologia 119:149–158

    Article  Google Scholar 

  • Mayr S, Charra-Vaskou K (2007) Winter at the alpine timberline causes complex within-tree patterns of water potential and embolism in Picea abies. Physiol Plant 131:131–139

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiol Plant 115:74–80

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology 87(12):3175–3185

    Article  PubMed  Google Scholar 

  • Miceli C, Pucciarelli S, Ballarini P, Luporini P (2000) Cold-stable microtubules of the Antarctic ciliate Euplotes focardii. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. Caxton, Christchurch, pp 154–157

    Google Scholar 

  • Minami A, Kawamura Y, Yamazaki T, Furuto A, Uemura M (2009) Plasma membrane and plant freezing tolerance: possible involvement of plasma membrane microdomains in cold acclimation. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness from the laboratory to the field. CABI, Oxfordshire

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  • Mizuno N, Sugie A, Kobayashi F, Takumi S (2008) Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. J Plant Physiol 165:462–467

    Article  PubMed  CAS  Google Scholar 

  • Montiel P, Smith A, Keiller D (1999) Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res 18(2):229–235

    Article  Google Scholar 

  • Moser W (1970) Ökophysiologische Unersuchungen an Nivalpflanzen. Mittl Ostalp-din Ges f Vegetkde 11:121–134

    Google Scholar 

  • Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m”. Sitzungsber Österr Akad Wiss Math-naturw Kl Abt 1 186:387–419

    Google Scholar 

  • Musser RL, Thomas SA, Wise RR, Peeler TC, Naylor AW (1984) Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling-stressed soybeans. Plant Physiol 74:749–754

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford

    Google Scholar 

  • Neuner G, Buchner O, Braun V (2000) Short-term changes in heat tolerance in the alpine cushion plant Silene acaulis ssp. excapa [All.]J. Braun at different altitudes. Plant Biol 2:677–683

    Article  Google Scholar 

  • Nick P (1999) Signals, motors, morphogenesis—the cytoskeleton in plant development. Plant Biol 1:169–179

    Article  CAS  Google Scholar 

  • Nick P (2000) Plant microtubules: potential for biotechnology. Springer, Berlin

    Google Scholar 

  • Niki T, Yoshida S, Sakai A (1978) Studies on chilling injury in plant cells. I. Ultrastructural changes associated with chilling injury in callus tissues of Cornus stolonifera. Plant Cell Physiol 19:139–146

    Google Scholar 

  • Nogues S, Tcherkez G, Streb P, Pardo A, Baptist F, Bligny R, Ghashghaie J, Cornic G (2006) Respiratory carbon metabolism in the high mountain species Ranunculus glacialis. J Exper Bot 57:3837–3845

    Article  CAS  Google Scholar 

  • Oerbaeck JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) (2007) Arctic alpine ecosystems and people in a changing environment. Springer, Berlin

  • Olave-Concha N, Ruiz-Lara S, Muñoz X, Bravo LA, Corcuera LJ (2004) Accumulation of dehydrin transcripts and proteins in response to abiotic stresses in Deschampsia antarctica. Antarct Sci 16(2):175–184

    Article  Google Scholar 

  • Olave-Concha N, Bravo LA, Ruiz-Lara S, Corcuera LJ (2005) Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv. Polar Biol 28:506–513

    Article  Google Scholar 

  • Oppeneiger C (2008) Einfluss von klimatischen Faktoren auf den Primär- und Sekundärstoffwechsel von Dryas octopetala L. Dissertation, Universität Innsbruck

  • Örvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23(6):785–794

    Article  PubMed  Google Scholar 

  • Palta JP, Weiss LS (1993) Ice formation and freezing injury: an overview of the survival mechanisms and molecular aspects of injury and cold acclimation in herbaceous plants. In: Li PH (ed) Advances in plant cold hardiness. CRC, Boca Raton, pp 141–174

    Google Scholar 

  • Pérez-Torres E, García A, Dinamarca J, Alberdi M, Gutiérrez A, Gidekel M, Ivanov AG, Hüner NPA, Corcuera LJ, Bravo LA (2004a) The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Funct Plant Biol 31(7):731–741

    Article  Google Scholar 

  • Pérez-Torres E, Dinamarca J, Bravo LA, Corcuera LJ (2004b) Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biol 27:183–189

    Article  Google Scholar 

  • Pérez-Torres E, Bravo LA, Corcuera LJ, Johson GN (2007) Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. Physiol Plant 130:185–194

    Article  CAS  Google Scholar 

  • Pihakaski K (1981) Seasonal changes in structure of mesophyll cells in subarctic Diapensia lapponica L. Rep Kevo Subarct Res Stat 17:67–80

    Google Scholar 

  • Pihakaski K (1986) Quantitative seasonal variation in mitochondrial ultrastructure of mesophyll cells of Diapensia lapponica L. with reference to some effects of fixative osmolality. Protoplasma 131:107–117

    Article  Google Scholar 

  • Pihakaski K (1988) Seasonal changes in the chloroplast ultrastructure of Diapensia lapponica. Nord J Bot 8(4):361–367

    Article  Google Scholar 

  • Pihakaski K, Junnila S (1990) Cold acclimation of subarctic Diapensia lapponica L. Funct Ecol 2:221–228

    Article  Google Scholar 

  • Piotrowicz-Cieślak AI, Gielwanowska I, Bochenek A, Loro P, Górecki RJ (2005) Carbohydrates in Colobanthus quitensis and Deschampsia antarctica. Acta Soc Bot Pol 74(3):209–217

    Google Scholar 

  • Possingham JV, Vesk M, Mercer FV (1964) The fine structure of leaf cells of manganese-deficient spinach. J Ultrastruct Res 11:68–83

    Article  CAS  Google Scholar 

  • Powles SB (1984) Photooxidation and photoinhibition in higher plants. Annu Rev Plant Physiol 35:15–43

    Article  CAS  Google Scholar 

  • Pyke KA, Howells CA (2002) Plastid and stromule morphogenesis in tomato. Ann Bot (Lond) 90:559–566

    Article  CAS  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40(3):259–268

    Article  CAS  Google Scholar 

  • Remias D, Holzinger A, Lütz C (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48(4):302–312

    Article  Google Scholar 

  • Rozema J, Broekman R, Lud D, Huiskes AHJ, Moerdijk T, de Bakker N, Meijkamp B, van Beem A (2001) Consequences of depletion of stratospheric ozone for terrestrial Antarctic ecosystems: the response of Deschampsia antarctica to enhanced UV-B radiation in a controlled environment. Plant Ecol 154:103–115

    Google Scholar 

  • Rozema J, Boelen P, Blokker P (2005) Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environ Pollut 137:428–442

    Article  PubMed  CAS  Google Scholar 

  • Ruhland CT, Day TA (2000) Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant 109:244–251

    Article  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, Berlin

    Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56(4):1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Selga T, Selga M (2000) The synapse-like interactions between chloroplast, dictyosome, and other cell compartments during increased ethylene production in leaves of winter rye (Secale cereale L.). Photosynthetica 38:433–441

    Article  Google Scholar 

  • Shimokawa K, Sakanoshita A, Horiba K (1978) Ethylene-induced changes of chloroplast structure in Satsuma mandarin (Citrus unshiu Marc.). Plant Cell Physiol 19(2):229–236

    CAS  Google Scholar 

  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Blackwell, Óxford

    Book  Google Scholar 

  • Starr G, Oberbauer SF, Ahlquist LE (2008) The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arct Antarct Alp Res 40(1):181–191

    Article  Google Scholar 

  • Stefanowska M, Kuras M, Kacperska A (2002) Low temperature-induced modifications in cell ultrastructure and localization of phenolics in winter oilseed rape (Brassica napus L. var. olifera L.) leaves. Ann Bot 90:637–645

    Article  PubMed  CAS  Google Scholar 

  • Steinacher G, Wagner J (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora. doi:10.1016/j.flora.2009.12.012

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35:543–584

    CAS  Google Scholar 

  • Stibal M, Elster J, Sabacka M, Kastovska K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophycaee) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Ecology 59:265–273

    Article  CAS  Google Scholar 

  • Streb P, Feierabend J, Bligny R (1997) Resistance of photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1030–1040

    Article  CAS  Google Scholar 

  • Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photoprotection in high-mountain plants. Planta 207:313–324

    Article  CAS  Google Scholar 

  • Streb P, Aubert S, Gout E, Bligny R (2003a) Cold- and light-induced changes of metabolite and antioxidant levels in two high mountain plant species Soldanella alpina and Ranunculus glacialis and a lowland species Pisum sativum. Physiol Plant 118:96–104

    Article  PubMed  CAS  Google Scholar 

  • Streb P, Aubert S, Gout E, Bligny R (2003b) Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. J Exp Bot 54(381):405–418

    Article  PubMed  CAS  Google Scholar 

  • Streb P, Josse E-M, Gallouët E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain species Ranunculus glacialis. Plant Cell Environ 28:1123–1135

    Article  CAS  Google Scholar 

  • Taschler D, Neuner G (2004) Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ 27:737–746

    Article  Google Scholar 

  • Taschler D, Beikircher B, Neuner G (2004) Frost resistance and ice nucleation in leaves of five woody timberline species measured in situ during shoot expansion. Tree Physiol 24:331–337

    PubMed  CAS  Google Scholar 

  • Taulavuori K, Sarala M, Taulavuori E (2010) Growth responses of trees to Arctic light environment. Prog Bot 71:157–168

    Article  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thiel S, Döhring T, Köfferlein M, Kosak A, Martin P, Seidlitz HK (1996) A phytotron to plant stress research: how far can artificial lighting compare to natural sunlight? J Plant Physiol 148:456–463

    CAS  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Thron C (1996) Auswirkungen globaler Umweltveränderungen auf Photosynthese und Ultrastruktur von alpinen Hochgebirgspflanzen. Dissertation, Universität München

  • Tuteja N (2009) Cold, salinity, and drought stress. In: Hirt H (ed) Plant stress biology. Wiley-Vch, Weinheim

    Google Scholar 

  • Uemura M, Steponus PL (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112:245–254

    Article  Google Scholar 

  • van Gestel NC, Nesbit AD, Gordon EP, Green C, Paré PW, Thompson L, Peffley EB, Tissue DT (2005) Continuous light may induce photosynthetic downregulation in onion—consequences for growth and biomass partitioning. Physiol Plant 125:235–246

    Article  CAS  Google Scholar 

  • Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma. doi:10.1007/s00709-009-0104-1

  • Wasteneys GO, Galway ME (2003) Remodelling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    Article  PubMed  CAS  Google Scholar 

  • Welling A, Palva AT (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181

    Article  CAS  Google Scholar 

  • Wheeler RM, Tibbits TW (1986) Growth and tuberization of potato (Solanum tuberosum L.) under continuous light. Plant Physiol 80:801–804

    Article  PubMed  CAS  Google Scholar 

  • Wielgolaski FE, Karlsen SR (2007) Some views on plants in polar and alpine regions. Rev Environ Sci Biotechnol 6:33–45

    Article  Google Scholar 

  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ 19:138–146

    Article  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Phil Trans R Soc Lond B 355:1517–1529

    Article  CAS  Google Scholar 

  • Wise RR (1995) Chilling enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45:79–97

    Article  CAS  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol 83:272–277

    Article  PubMed  CAS  Google Scholar 

  • Wookey PA, Robinson CH, Parsons AM, Welker JM, Press MC, Callaghan TV, Lee JA (1995) Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high arctic polar semi-desert, Svalbard. Oecologia 102:478–489

    Article  Google Scholar 

  • Wüthrich CH, Möller I, Thannheiser D (1999) CO2 fluxes in different plant communities of a high-Arctic tundra watershed (Western Spitsbergen). J Veg Sci 10:413–420

    Article  Google Scholar 

  • Xiong FS, Ruhland CT, Day TA (1999) Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plant 106:276–286

    Article  CAS  Google Scholar 

  • Zuñiga-Feest A, Ort DR, Gutiérrez A, Gidekel M, Bravo LA, Corcuera LJ (2005) Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth Res 83:75–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks L. Di Piazza and A. Holzinger for discussions and G. Neuner, J. Wagner, B. De Carli, and Ch. Oppeneiger for unpublished data. A part of this work was supported by an Austrian Science Foundation (FWF) grant to CL.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Lütz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lütz, C. Cell physiology of plants growing in cold environments. Protoplasma 244, 53–73 (2010). https://doi.org/10.1007/s00709-010-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0161-5

Keywords

Navigation