Skip to main content
Log in

Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts JMFG, Lauwers AM, Heinen W (1985) Temperature-dependent lipid content and fatty acid composition of three thermophilic bacteria. Anton Leeuw 51:155–165

    Article  CAS  Google Scholar 

  • Akpabio EJ, Ekott EJ, Akpan ME (2011) Inhibition and control of microbiologically influenced corrosion in oilfield materials. Environ Res J 5(2):59–65

    Article  Google Scholar 

  • Alawi M, Lerm S, Vetter A, Wolfgramm M, Seibt A, Würdemann H (2011) Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy. Grundwasser 16(2):105–112

    Article  Google Scholar 

  • Amy PS (1997) Microbial dormancy and survival in the subsurface. In: Amy P, Haldeman D (eds) The microbiology of the terrestrial subsurface. CRC Press, Florida, pp 185–203

    Google Scholar 

  • Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol 30:21–33

    Article  Google Scholar 

  • Balkwill D, Reeves R, Drake G, Reeves J, Crocker F, King M, Boone D (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24

    Article  CAS  PubMed  Google Scholar 

  • Beech IB, Gaylarde CC (1999) Recent advances in the study of biocorrosion—an overview. Rev Microbiol 30:177–190

    Article  CAS  Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  CAS  Google Scholar 

  • Birkeland NK (2005) Sulfate-reducing bacteria and archaea. In: Olivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, pp 35–54

    Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS et al (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Envion Microbiol 69(10):6143–6151

    Article  CAS  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel K (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690

    Article  CAS  PubMed  Google Scholar 

  • Brons HE, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Wat Res 25:729–736

    Article  CAS  Google Scholar 

  • Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485

    Article  CAS  PubMed  Google Scholar 

  • Burke V, Wiley AJ (1937) Bacteria in coal. J Bacteriol 34:475–481

    CAS  PubMed  Google Scholar 

  • Campbell IL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359–363

    CAS  PubMed  Google Scholar 

  • Cayol JL, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia JL (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44(3):534–540

    Article  CAS  PubMed  Google Scholar 

  • Cayol JL, Fardeau ML, Garcia JL, Ollivier B (2002) Evidence of interspecies hydrogen transfer from glycerol in saline environments. Extremophiles 6:131–134

    Article  CAS  PubMed  Google Scholar 

  • Characklis WG (1990) Microbial fouling. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 523–584

    Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ et al (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278

    Article  CAS  PubMed  Google Scholar 

  • Coetser SE, Cloete TE (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev Microbial 31(4):213–232

    Article  CAS  Google Scholar 

  • Criaud A, Fouillac C, Marty B, Brach M, Wei HF (1987) Gas geochemistry of the dogger geothermal aquifer. Proceedings, Twelfth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 20–22, 1987 SGP-TR-109

  • Cullimore DR (1999) Microbiology of well biofouling. Lewis Publishers, Boca Raton

    Google Scholar 

  • Cullimore DR (2007) Practical manual of groundwater microbiology, 2nd edn. CRC Press/Taylor and Francis Group

  • Cuypers H, Zumft WG (1993) Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. J Bacteriol 175:7236–7246

    CAS  PubMed  Google Scholar 

  • D′Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070

    Article  PubMed  Google Scholar 

  • Dalas E, Koutsoukos PG (1989) Calcium carbonate scale formation on heated metal surfaces. Geothermics 18(1/2):83–88

    Article  CAS  Google Scholar 

  • Daumas S, Cord-Ruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Van Leeuwenhoek 54(2):165–178

    Article  CAS  PubMed  Google Scholar 

  • Demadis KD (2003) Combating heat exchanger fouling and corrosion phenomena in process water. In: Shah RK (ed) Compact heat exchangers and enhancement technology for the process industries. Begell House Inc, New York, pp 483–490

    Google Scholar 

  • Denger K, Warthmann R, Ludwig W, Schink B (2002) Anaerophaga thermohalophila gen. nov., sp nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178

    PubMed  Google Scholar 

  • Dohrmann AB, Tebbe CC (2004) Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). In: Kowalchuk GA, Bruijn FJ de, Head IM, Akkermans AD, van Elsas JD (eds) Molecular Microbial Ecology Manual. 2nd edn. Dodrecht: Kluwer Academic Publisher 3.16, pp 809–838

  • Drysdale G, Kasan H, Bux F (1999) Denitrification by heterotrophic bacteria during activated sludge treatment. Water SA 25:357–362

    CAS  Google Scholar 

  • Flemming HC (2002) Biofouling in water systems—cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  CAS  PubMed  Google Scholar 

  • Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156:609–643

    Article  CAS  Google Scholar 

  • Gallup DL (2002) Investigations of organic inhibitors for silica scale control in geothermal brines. Geothermics 31:415–430

    Article  CAS  Google Scholar 

  • Gallup DL (2009) Production engineering in geothermal technology: a review. Geothermics 38:326–334

    Article  Google Scholar 

  • Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  PubMed  Google Scholar 

  • Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282

    Article  CAS  PubMed  Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 0:1–16

    Google Scholar 

  • Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshwat Biol 54:649–677

    Article  Google Scholar 

  • Grigoryan A, Voordouw G (2008) Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle. Ann NY Acad Sci 1125:345–352

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39:195–217

    Article  CAS  Google Scholar 

  • Hamilton WA (2003) Microbiologically influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  CAS  PubMed  Google Scholar 

  • Harshey RM (2003) Bacterial motility on surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    Article  CAS  PubMed  Google Scholar 

  • Howsam P (1988) Biofouling in wells and aquifers. J Inst Water Environ Manag 2:209–215

    Article  Google Scholar 

  • Hubert C, Arnosti C, Brüchert V, Loy A, Vandieken V, Jørgensen BB (2010) Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature. Environ Microbiol 12(4):1089–1104

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen TF, Kjeldsen KU, Ingvorsen K (2006) Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Int J Syst Evol Microbiol 56:2063–2069

    Article  CAS  PubMed  Google Scholar 

  • Javaherdashti R (2011) Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl Microbiol Biotechnol 91:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Jesußek A, Grandel S, Dahmke A (2012) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci. doi:10.1007/s12665-012-2037-9

    Google Scholar 

  • Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert P, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E (2007) Ancient bacteria show evident of DNA repair. PNAS 104:14401–14405

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Kabus F, Wolfgramm M (2009) Aquifer thermal energy storage in Neubrandenburg—monitoring throughout three years of regular operation. In: Proceedings of the 11th International Conference on Energy Storage 2009, Stockholm, Sweden, pp 8

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kalmbach S, Manz W, Wecke J, Szewzyk U (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 49:769–777

    Article  PubMed  Google Scholar 

  • Kaye JZ, Baross JA (2004) Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface. Appl Environ Microbiol 70(10):6220–6229

    Article  CAS  PubMed  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress compounds to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Klotzbücher T, Kappler A, Straub KL, Haderlein SB (2007) Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole heat exchangers. Geothermics 36:348–361

    Article  CAS  Google Scholar 

  • Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat. CMLS Cell Mol Life Sci 58:1216–1233

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011a) Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime. Grundwasser 16(2):93–104

    Article  Google Scholar 

  • Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011b) Mikrobiologisches Monitoring in zwei geothermisch genutzten Aquiferen des Norddeutschen Beckens. Z Geol Wiss 39(3–4):195–212

    Google Scholar 

  • Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM et al (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482

    Article  CAS  PubMed  Google Scholar 

  • Little BJ, Lee JS (2007) Microbiologically influenced corrosion., Wiley series in corrosionWiley, New Jersey

    Book  Google Scholar 

  • Little BL, Wagner PA, Hart KR, Ray RI (1996) Spatial relationships between bacteria and localized corrosion. Corrosion/96, paper no. 278 (Houston, TX: NACE International), pp 8

  • Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33(3):365–381

    Article  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Herrera C, Sauceda I, González-Sánchez J, Acuña N (2010) Corrosion degradation of pipeline carbon steels subjected to geothermal plant conditions. Anti-Corros Methods Mater 57(4):167–172

    Article  CAS  Google Scholar 

  • Möller P, Weise SM, Tesmer M, Dulski P, Pekdeger A, Bayer U, Magri F (2008) Salinization of groundwater in the North German Basin: results from conjoint investigation of major, trace element and multi-isotope distribution. Int J Earth Sci (Geol Rundsch) 97:1057–1073

    Article  CAS  Google Scholar 

  • Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci Rev 24:1–42

    Article  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek Int J Gen Mol Microbiol 73:127–141

    Article  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  PubMed  Google Scholar 

  • Neria-Gonzalez I, Wang ET, Ramirez F, Romero JM, Hernandez-Rodrigues C (2006) Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12:122–133

    Article  CAS  PubMed  Google Scholar 

  • Obst K, Wolfgramm M (2010) Geothermische, balneologische und speichergeologische Potenziale und Nutzungen des tieferen Untergrundes der Region Neubrandenburg. Neubrandenburger Geol Beitr 10:145–174

    Google Scholar 

  • Ohta H, Hattori R, Ushiba Y, Mitsui H, Ito M, Watanabe H, Tonosaki A, Hattori T (2004) Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Microbiol 54:2185–2190

    Article  CAS  PubMed  Google Scholar 

  • Parkes RJ, Sass (2007) The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance. In: Barton L, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 329–358

    Chapter  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA et al (1994) Deep bacterial biosphere in Pacific ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Article  Google Scholar 

  • Patureau D, Zumstein E, Delgenes JP, Moletta R (2000) Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb Ecol 39:145–152

    Article  CAS  PubMed  Google Scholar 

  • Philpotts AR (1990) Principles of igneous and metamorphic petrology. Prentice Hall, New Jersey, p 498

    Google Scholar 

  • Pryfogle PA (2005) Monitoring biological activity at geothermal power plants. Idaho National Laboratory

  • Reardon EJ (1995) Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates. Environ Sci Technol 29:2936–2945

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF (2005) Organic compatible salutes of halotolerant and halophilic microorganisms. Sal Syst 1:5–30

    Article  CAS  Google Scholar 

  • Rogers JR, Bennett PC, Choi WJ (1998) Feldspars as a source of nutrients for microorganisms. J Am Miner 83:1532–1540

    CAS  Google Scholar 

  • Sand W (2003) Microbial life in geothermal waters. Geothermics 32:655–667

    Article  CAS  Google Scholar 

  • Sass H, Cypionka H (2004) Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. System Appl Microbiol 27:541–548

    Article  Google Scholar 

  • Schmidt T, Mangold D, Müller-Steinhagen H (2004) Central solar heating plants with seasonal storage in Germany. Sol Energy 76:165–174

    Article  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed  Google Scholar 

  • Seibt P, Kabus F (2006) Aquifer thermal energy storage—projects implemented in Germany. Proceedings of Ecostock, New Jersey, p 8

    Google Scholar 

  • Seibt A, Thorwart K (2011) Untersuchungen zur Gasphase geothermisch genutzter Tiefenwässer und deren Relevanz für den Anlagenbetrieb. Z Geol Wiss 39(3–4):261–274

    Google Scholar 

  • Shock EL (2009) Minerals as energy sources for microorganisms. Econ Geol 104:1235–1248

    Article  CAS  Google Scholar 

  • Skinner BJ, White DE, Rose HJ, Mays RE (1967) Sulfides associated with the Salton sea geothermal brine. Econ Geol 62:316–330

    Article  CAS  Google Scholar 

  • Steube C, Richter S, Griebler C (2009) First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol J 17:23–35

    Article  Google Scholar 

  • Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate reducing bacteria and their involvement in oxygen independent iron cycling. Geomicrobiol J 21:371–378

    Article  CAS  Google Scholar 

  • Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling formulation mud process on the microbial communities in thermogenic natural gas wells of the Barnett shale. Appl Environ Microbiol 77(14):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Sunde E, Torsvik T (2005) Microbial control of hydrogen sulfide production in oil reservoirs. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, D.C., pp 201–213

    Google Scholar 

  • Suzina NE, Mulyukin AL, Kozlova AN, Shorokova AP, Dmitriev VV, Barinova ES, Mokhova ON, El’-Registan GI, Duda VI (2004) Ultrastructure of resting cells of some non-spore-forming bacteria. Microbiology 73:516–529

    Article  CAS  PubMed  Google Scholar 

  • Taylor SW, Lange CR, Lesold EA (1997) Biofouling of contaminated ground-water recovery wells: characterization of microorganisms. Groundwater 35(2):973–980

    Article  CAS  Google Scholar 

  • Teske A, Stahl DA (2002) Microbial mats and biofilms: evolution, structure, and function of fixed microbial communities. In: Staley JT (ed) Reysenbach A–L biodiversity of microbial life. Wiley, New York, pp 49–100

    Google Scholar 

  • Valdez B, Schorr M, Quintero M, Carrillo M, Zlatev R, Stoytcheva M, de Dios Ocampo J (2009) Corrosion and scaling at Cerro Prieto geothermal field. Anti-Corros Methods Mater 56(1):28–34

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Article  PubMed  CAS  Google Scholar 

  • Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 123–142

    Google Scholar 

  • Vetter A, Mangelsdorf K, Schettler G, Seibt A, Wolfgramm M, Rauppach K, Vieth-Hillebrand A (2012) Fluid chemistry and impact of different operating modes on microbial community at Neubrandenburg heat storage (Northeast German Basin). Organ Geochem 53:8–15

    Article  CAS  Google Scholar 

  • Videla HA (2002) Prevention and control of biocorrosion. Intern Biodet Biodeg 49:259–270

    Article  CAS  Google Scholar 

  • Vieth A, Mangelsdorf K, Sykes R, Horsfield B (2008) Water extraction of coals—potential for estimating low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere. Organ Geochem 39(8):985–991

    Article  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    CAS  PubMed  Google Scholar 

  • Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the woodlark basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe JW (1998) Prokaryotes: the Unseen Majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  Google Scholar 

  • Wilms R, Sass H, Kopke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59(3):611–621

    Article  CAS  PubMed  Google Scholar 

  • Wilson JT, McNabb JF, Balkwill DL, Ghiorse WC (2006) Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 21(2):134–142

    Article  Google Scholar 

  • Wolfgramm M, Seibt A (2006) Geochemisches Monitoring des geothermalen Tiefenspeichers in Neubrandenburg. GTV-Tagung, Karlsruhe, pp 388–397

    Google Scholar 

  • Wolfgramm M, Rauppach K, Thorwarth K (2011) Mineralneubildung und Partikeltransport im Thermalwasserkreislauf geothermischer Anlagen Deutschland. Z Geol Wiss 39(3–4):213–239

    Google Scholar 

  • Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679

    Article  CAS  PubMed  Google Scholar 

  • Zhu XY, Lubeck J, Kilbane JJ II (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69(9):5354–5363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the public utilities of the city Neubrandenburg providing access to the topside facility of the heat store. In addition, we thank AMODIA Bioservice GmbH (Braunschweig, Germany) for SSCP analyses and MicroPro GmbH (Gommern, Germany) for MPN counting. In addition, we thank Rickard Lindner for the analyses of the SRB diversity using dsrB gene fragments. We are thankful to Alexandra Vetter and Andrea Vieth-Hillebrand for the DOC measurements and the analyses of the dissolved organic acids in the fluid samples. This work was supported by Federal Ministry of the Environment, Natural Conservation and Nuclear Safety (BMU, grant No. 0327634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Würdemann.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerm, S., Westphal, A., Miethling-Graff, R. et al. Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17, 311–327 (2013). https://doi.org/10.1007/s00792-013-0518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0518-8

Keywords

Navigation