Skip to main content

Advertisement

Log in

Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve Calyptogena okutanii

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

To understand sulfur oxidation in thioautotrophic deep-sea clam symbionts, we analyzed the recently reported genomes of two chemoautotrophic symbionts of Calyptogena okutanii (Candidatus Vesicomyosocius okutanii strain HA: Vok) and C. magnifica (Candidatus Ruthia magnifica strain Cm: Rma), and examined the sulfur oxidation gene expressions in the Vok by RT-PCR. Both symbionts have genes for sulfide-quinone oxidoreductase (sqr), dissimilatory sulfite reductase (dsr), reversible dissimilatory sulfite reductase (rdsr), sulfur-oxidizing multienzyme system (sox) (soxXYZA and soxB but lacking soxCD), adenosine phosphosulfate reductase (apr), and ATP sulfurylase (sat). While these genomes share 29 orthologous genes for sulfur oxidation implying that both symbionts possess the same sulfur oxidation pathway, Rma has a rhodanese-related sulfurtransferase putative gene (Rmag0316) that has no corresponding ortholog in Vok, and Vok has one unique dsrR (COSY0782). We propose that Calyptogena symbionts oxidize sulfide and thiosulfate, and that sulfur oxidation proceeds as follows. Sulfide is oxidized to sulfite by rdsr. Sulfite is oxidized to sulfate by apr and sat. Thiosulfate is oxidized to zero-valence sulfur by sox, which is then reduced to sulfide by dsr. In addition, thiosulfate may also be oxidized into sulfate by another component of sox. The result of the RT-PCR showed that genes (dsrA, dsrB, dsrC, aprA, aprB, sat, soxB, and sqr) encoding key enzymes catalyzing sulfur oxidation were all equally expressed in the Vok under three different environmental conditions (aerobic, semioxic, and aerobic under high pressure at 9 MPa), indicating that all sulfur oxidation pathways function simultaneously to support intracellular symbiotic life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beller HR, Chain PS, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488

    Article  CAS  PubMed  Google Scholar 

  • Beynon JD, MacRae IJ, Huston SL, Nelson DC, Segel IH, Fisher AJ (2001) Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. Biochemistry 40:14509–14517

    Article  CAS  PubMed  Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Sanders NK (1991) Sulfide and carbon dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica and its chemoautotrophic symbionts. Physiol Zool 64:1444–1470

    CAS  Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Arp AJ, Oros DR (1993) The role of a zinc-based, serum-borne sulfide-binding component in the uptake and transport of dissolved sulfide by the chemoautotrophic symbiont-containing clam Calyptogena elongata. J Exp Biol 179:131–158

    CAS  Google Scholar 

  • Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404

    Article  CAS  PubMed  Google Scholar 

  • Fialamedioni A, Boulegue J, Ohta S, Felbeck H, Mariotti A (1993) Source of energy sustaining the Calyptogena Populations from deep trenches in subduction zones off Japan. Deep-sea Res I 40:1241–1258

    Article  CAS  Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine-invertebrates. Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism. Appl Environ Microbiol 67:2873–2882

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182:4677–4687

    Article  CAS  PubMed  Google Scholar 

  • Grimm F, Franz B, Dahl C (2008) Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, Berlin, pp 101–114

    Chapter  Google Scholar 

  • Hensen D, Sperling D, Truper HG, Brune DC, Dahl C (2006) Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Ohta S (1997) Calyptogena okutanii n. sp., a sibling Species of Calyptogena soyoae Okutani, 1957 (Bivalvia : Vesicomyidae). Venus 56:189–195

  • Koyama S, Miwa T, Horii M, Ishikawa Y, Horikoshi K, Aizawa M (2002) Pressure-stat aquarium system designed for capturing and maintaining deep-sea organisms. Deep Sea Res Part I Oceanogr Res Pap 49:2095–2102

    Article  Google Scholar 

  • Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T (2007) Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol 17:881–886

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara H, Takaki Y, Yoshida T, Shimamura S, Takishita K, Reimer JD, Kato C, Maruyama T (2008) Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams. Extremophiles 12:365–374

    Article  CAS  PubMed  Google Scholar 

  • Laue BE, Nelson DC (1994) Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 176:3723–3729

    CAS  PubMed  Google Scholar 

  • Markert S, Arndt C, Felbeck H, Becher D, Sievert SM, Hugler M, Albrecht D, Robidart J, Bench S, Feldman RA, Hecker M, Schweder T (2007) Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315:247–250

    Article  CAS  PubMed  Google Scholar 

  • Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, FL, pp 125–167

    Google Scholar 

  • Newton IL, Woyke T, Auchtung TA, Dilly GF, Dutton RJ, Fisher MC, Fontanez KM, Lau E, Stewart FJ, Richardson PM, Barry KW, Saunders E, Detter CJ, Wu D, Eisen JA, Cavanaugh CM (2007) The Calyptogena magnifica chemoautotrophic symbiont genome. Science 315:998–1000

    Article  CAS  PubMed  Google Scholar 

  • Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC (1998) Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci USA 95:9962–9966

    Article  CAS  PubMed  Google Scholar 

  • Pott AS, Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144:1881–1894

    Article  CAS  PubMed  Google Scholar 

  • Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508

    Article  CAS  PubMed  Google Scholar 

  • Schutz M, Maldener I, Griesbeck C, Hauska G (1999) Sulfide-quinone reductase from Rhodobacter capsulatus: Requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol 181:6516–6523

    CAS  PubMed  Google Scholar 

  • Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, Blake RA, Boller AJ, Chain PS, Clark JA, Davis CR, Detter C, Do KF, Dobrinski KP, Faza BI, Fitzpatrick KA, Freyermuth SK, Harmer TL, Hauser LJ, Hugler M, Kerfeld CA, Klotz MG, Kong WW, Land M, Lapidus A, Larimer FW, Longo DL, Lucas S, Malfatti SA, Massey SE, Martin DD, McCuddin Z, Meyer F, Moore JL, Ocampo LH Jr, Paul JH, Paulsen IT, Reep DK, Ren Q, Ross RL, Sato PY, Thomas P, Tinkham LE, Zeruth GT (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 4:e383

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Vetter RD (1985) Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar Biol 88:33–42

    Article  CAS  Google Scholar 

  • Wilmot DB, Vetter RD (1990) The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Mar Biol 106:273–283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the captains and crew of the R/V Natsushima and R/V Yokosuka and to the operation teams of the DSRV Shinkai6500 and ROV Hyperdolphin for sample collection. We thank Drs. K. Takai, T. Nunoura, and Y. Fujiwara at JAMSTEC and H. Kojima at Hokkaido University for their discussion. We also thank M. Kawato at JAMSTEC for the help with DNA sequencing and Dr. P. Kottapalli for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Yoshida.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, M., Yoshida, T., Kuwahara, H. et al. Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve Calyptogena okutanii . Extremophiles 13, 895–903 (2009). https://doi.org/10.1007/s00792-009-0277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0277-8

Keywords

Navigation