Skip to main content
Log in

Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

To understand reductive genome evolution (RGE), we comparatively analyzed the recently reported small genomes of two chemoautotrophic, intracellular symbionts of deep-sea clams, Calyptogena okutanii and C. magnifica. Both genomes lack most genes for DNA recombination and repair such as recA and mutY. Their genome architectures were highly conserved except one inversion. Many deletions from small (<100 bp) to large (1–11 kbp) sizes were detected and the deletion numbers decreased exponentially with size. Densities of deletions and short-repeats, as well as A+T content were higher in non-coding regions than in coding regions. Because Calyptogena symbiont genomes lack recA, we propose that deletions and the single inversion occurred by RecA-independent recombination (RIR) at short-repeats with simultaneous consumption of repeats, and that short-repeats were regenerated by accelerated mutations with enhanced A+T bias due to the absence of mutY. We further propose that extant Calyptogena symbiont genomes are in an actively reducing stage of RGE consisting of small and large deletions, and the deletions are caused by short-repeat dependent RIR along with regeneration of short-repeats. In future, the RGE rate will slowdown when the gene repertoires approach the minimum gene set necessary for intracellular symbiotic life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achaz G, Boyer F, Rocha EP, Viari A, Coissac E (2007) Repseek, a tool to retrieve approximate repeats from large DNA sequences. Bioinformatics 23:119–121

    Article  PubMed  CAS  Google Scholar 

  • Alexeyenko A, Tamas I, Liu G, Sonnhammer EL (2006) Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics 22:e9–e15

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Au KG, Clark S, Miller JH, Modrich P (1989) Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc Natl Acad Sci USA 86:8877–8881

    Article  PubMed  CAS  Google Scholar 

  • Boss KJ, Turner RD (1980) The giant white clam from the Garapagos Rift, Calyptogena magnifica species novum. Malacologia 20:161–194

    Google Scholar 

  • Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, NISC Comparative Sequencing Program, Green ED, Sidow A, Batzoglou S (2003) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13:721–731

    Article  PubMed  CAS  Google Scholar 

  • Bzymek M, Lovett ST (2001) Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA 98:8319–8325

    Article  PubMed  CAS  Google Scholar 

  • Dale C, Wang B, Moran N, Ochman H (2003) Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol 20:1188–1194

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Lazarus AB, Wernegreen JJ (2005) Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 15:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Delmotte F, Rispe C, Schaber J, Silva FJ, Moya A (2006) Tempo and mode of early gene loss in endosymbiotic bacteria from insects. BMC Evol Biol 6:56

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  PubMed  CAS  Google Scholar 

  • Endow K, Ohta S (1990) Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae. Mar Ecol Prog Ser 64:309–311

    Article  Google Scholar 

  • Frank AC, Amiri H, Andersson SG (2002) Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Genetica 115:1–12

    Article  PubMed  Google Scholar 

  • Gil R, Silva FJ, Zientz E, et al (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388–9393

    Article  PubMed  CAS  Google Scholar 

  • Hall BG (2004) CodonAlign 2.0 published at: http://homepage.mac.com/barryghall/CodonAlign.html

  • Hanada K, Iwasaki M, Ihashi S, Ikeda H (2000) UvrA and UvrB suppress illegitimate recombination: synergistic action with RecQ helicase. Proc Natl Acad Sci USA 97:5989–5994

    Article  PubMed  CAS  Google Scholar 

  • Iyer L M, Koonin EV, Aravind L (2002) Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3:8

    Article  PubMed  Google Scholar 

  • Klasson L, Andersson SG (2004) Evolution of minimal-gene-sets in host-dependent bacteria. Trends Microbiol 12:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara H, Yoshida T, Takaki Y, et al (2007) Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol 17:881–886

    Article  PubMed  CAS  Google Scholar 

  • Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  PubMed  CAS  Google Scholar 

  • Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6:512–518

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Mira A (2001) The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol 2:Research0054.1–12

    Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, et al (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  PubMed  CAS  Google Scholar 

  • Newton IL, Woyke T, Auchtung TA, et al (2007) The Calyptogena magnifica chemoautotrophic symbiont genome. Science 315:998–1000

    Article  PubMed  CAS  Google Scholar 

  • Nghiem Y, Cabrera M, Cupples CG, Miller JH (1988) The mutY gene: a mutator locus in Escherichia coli that generates G.C–T.A transversions. Proc Natl Acad Sci USA 85:2709–2713

    Article  PubMed  CAS  Google Scholar 

  • O’Brien KP, Remm M, Sonnhammer EL (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33:D476–D80

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    PubMed  CAS  Google Scholar 

  • Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC (1998) Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci USA 95:9962–9966

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Brocal V, Gil R, Ramos S, et al (2006) A small microbial genome: the end of a long symbiotic relationship? Science 314:312–313

    Article  PubMed  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP (2003) An appraisal of the potential for illegitimate recombination in bacterial genomes and its consequences: from duplications to genome reduction. Genome Res 13:1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SG (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tzeng YH, Pan R, Li WH (2004) Comparison of three methods for estimating rates of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 21:2290–2298

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4:259–263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Drs. T. Okutani, Y. Fujiwara and K. Fujikura are acknowledged for the discussion about lifestyles of Calyptogena clams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Maruyama.

Additional information

Communicated by K. Horikoshi.

H. Kuwahara and Y. Takaki equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig legend, ESM Table 1-2

ESM Fig 1

ESM Fig 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwahara, H., Takaki, Y., Yoshida, T. et al. Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams. Extremophiles 12, 365–374 (2008). https://doi.org/10.1007/s00792-008-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0141-2

Keywords

Navigation