Skip to main content

Advertisement

Log in

Characterization of the intestinal microbiota of two Antarctic notothenioid fish species

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The fish fauna of the Southern Ocean is dominated by species of the perciform suborder Notothenioidei, which constitute 46% of fish species and 90% of biomass. Notothenioids have undergone rapid morphological and ecological diversification and developed physiological adaptations to a cold, highly oxygenated environment. Microbes inhabiting animal intestines include those that perform essential nutritional functions, but notothenioid gut microbial communities have not been investigated using cultivation-independent approaches. We analyzed bacterial 16S rRNA gene sequences obtained from the intestinal tract of Notothenia coriiceps and Chaenocephalus aceratus, which differ in their pelagic distribution and feeding strategies. Both samples showed dominance of Gammaproteobacteria (mostly Vibrionaceae), as has been reported for temperate teleost species. Both samples showed low diversity relative to that reported for other fish microbiota studies, with C. aceratus containing fewer OTUs than N. coriiceps. Despite the small sample size of this preliminary study, our findings suggest that Antarctic notothenioids carry a gut microbiota similar in composition to that of temperate fish, but exhibiting lower species-level diversity. The omnivorous N. coriiceps individual exhibited greater diversity than the exclusively carnivorous C. aceratus individual, which may indicate that increasing herbivory in fish leads to gut microbe diversification, as found in mammals. Lastly, we detected members of taxa containing known microbial pathogens, which have not been previously reported in Antarctic notothenioid fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

16S rRNA:

16S ribosomal RNA

NCI:

Notothenia coriiceps sequence library

CAI:

Chaenocephalus aceratus sequence library

OTU:

Operational taxonomic unit

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  PubMed  CAS  Google Scholar 

  • Bano N, DeRae Smith A, Bennett W, Vasquez L, Hollibaugh JT (2007) Dominance of Mycoplasma in the guts of the Long-Jawed Mudsucker, Gillichthys mirabilis, from five California salt marshes. Environ Microbiol 9:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Buckley BA, Hofmann GE (2004) Magnitude and duration of thermal stress determine kinetics of hsp gene regulation in the goby Gillichthys mirabilis. Physiol Biochem Zool 77:570–581

    Article  PubMed  CAS  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic noththenioid fish. Proc Natl Acad Sci USA 94:3811–3816

    Article  PubMed  CAS  Google Scholar 

  • Cheng C-HC, Chen L (1999) Evolution of an antifreeze glycoprotein: a blood protein that keeps Antarctic fish from freezing arose from a digestive enzyme. Nature 401:443–444

    Article  PubMed  CAS  Google Scholar 

  • Cheng C-HC, Detrich HW (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc B 362:2215–2232

    Article  CAS  Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW (1995) Genomic remnants of a-globin genes in the hemoglobinless antarctic icefishes. Proc Natl Acad Sci USA 92:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR (1962) The bacterial flora of Puget Sound fish. J Appl Microbiol 25:147–158

    Article  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Eastman JT (1997) Phyletic divergence and specialization for pelagic life in the Antarctic notothenioid fish Pleuragramma antarcticum. Comp Biochem Physiol 118:1095–1101

    Article  Google Scholar 

  • Eastman JT (1999) Aspects of the biology of the icefish Dacodraco hunteri (Notothenioidei, Channichthyidae) in the Ross Sea, Antarctica. Polar Biol 21:194–196

    Article  Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Olafsen J (1999) Bacterial interactions in early life stages of marine cold water fish. Microb Ecol 38:1–26

    Article  PubMed  Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203:2331–2339

    PubMed  CAS  Google Scholar 

  • Huber I, Spanggaard B, Appel KF, Rossen L, Nielsen T, Gram L (2004) Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 96:117–132

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Brunt J, Austin B (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 102:1654–1664

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhou Z, Yao B, Shi P, He S, Hølvold LB, Ringø E (2008) Effect of intraperitoneal injection of immunostimulatory substances on allochthonous gut microbiota of Atlantic salmon Salmo salar determined using denaturing gradient gel electrophoresis. Aquac Res 39:635–646

    Article  CAS  Google Scholar 

  • MacCormack WPM, Fraile ER (1990) Bacterial flora of newly caught Antarctic fish Notothenia neglecta. Polar Biol 10:413–417

    Google Scholar 

  • MacCormack WPM, Fraile ER (1991) Flora bacteriana del tracto digestivo de especímenes de Notothenia neglecta pescados en Caleta Potter. Arch. Shetland del Sur, Antártida. Rev Argent Microbiol 23:160–165

    CAS  Google Scholar 

  • MacFarlane R, McLaughlin J, Bullock G (1986) Quantitative and qualitative studies of gut flora in striped bass from estuarine and coastal marine environments. J Wildl Dis 22:344–348

    PubMed  CAS  Google Scholar 

  • Mead GC (1997) Bacteria in the gastrointestinal tract of birds. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbiology, vol vol 2. Chapman & Hall, London, pp 216–240

    Google Scholar 

  • Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979

    PubMed  CAS  Google Scholar 

  • Murray AE, Grzymski JJ (2007) Diversity and genomics of Antarctic marine micro-organisms. Philos Trans R Soc B 362:2259–2271

    Article  CAS  Google Scholar 

  • Near TJ, Parker SK, Detrich HW (2006) A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes. Mol Biol Evol 23:2008–2016

    Article  PubMed  CAS  Google Scholar 

  • Near TJ, Kendrick BJ, Detrich HW, Jones CD (2007) Confirmation of neutral buoyancy in Aethotaxis mitopteryx DeWitt (Notothenioidei: Nototheniidae). Polar Biol 44:3–447

    Google Scholar 

  • Ohwada K, Tabor PS, Colwell RR (1980) Species composition and barotolerance of gut microflora of deep-sea benthic macrofauna collected at various depths in the Atlantic Ocean. Appl Environ Microbiol 40:746–755

    PubMed  CAS  Google Scholar 

  • Romero J, Navarrete P (2006) 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microb Ecol 51:422–430

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006) Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl Environ Microbiol 72:6773–6779

    Article  PubMed  CAS  Google Scholar 

  • Shiina A, Itoi S, Washio S, Sugita H (2006) Molecular identification of intestinal microflora in Takifugu niphobles. Comp Biochem Physiol D1:128–132

    Google Scholar 

  • Sidell BD, O’Brien KM (2006) When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol 209:1791–1802

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rDNA sequence libraries from environmental samples. Appl Environ Microbiol 67:4373–4376

    Article  Google Scholar 

  • Spanggaard B, Huber I, Nielsen J, Nielsen T, Appel KF, Gram L (2000) The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182:1–15

    Article  CAS  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  PubMed  CAS  Google Scholar 

  • Trust TJ, Sparrow RA (1974) The bacterial flora in the alimentary tract of freshwater salmonid fishes. Can J Microbiol 20:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Trust TJ, Bull LM, Currie BR, Buckley JT (1979) Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri). J Fish Res Board Can 36:1174–1179

    Google Scholar 

  • Uchii K, Matsui K, Yonekura R, Tani K, Kenzaka T, Nasu M, Kawabata Z (2006) Genetic and physiological characterization of the intestinal bacterial microbiota of Bluegill (Lepomis macrochirus) with three different feeding habits. Microb Ecol 51:277–284

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Ratnayake-Lecamwasam M, Parker SK, Cocca E, Camardella L, di Prisco G, Detrich HW (1998) The major adult a-globin gene of Antarctic teleosts and its remnants in the hemoglobinless icefishes: calibration of the mutational clock for nuclear genes. J Biol Chem 273:14745–14752

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the excellent logistic support provided to our Antarctic field research program, performed at Palmer Station and on the seas of the Palmer Archipelago, by the staff of the Office of Polar Programs of the National Science Foundation, by the officers and crew of the ARSV Laurence M. Gould, and by the personnel of Raytheon Polar Services Company. Funding was provided by NSF grants OPP-0089451, OPP-0336932, and ANT-0635470 (to H·W.D.). N.L.W. was also supported by NSF grant EPS-0447681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi L. Ward.

Additional information

Communicated by H. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, N.L., Steven, B., Penn, K. et al. Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles 13, 679–685 (2009). https://doi.org/10.1007/s00792-009-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0252-4

Keywords

Navigation