Skip to main content

Advertisement

Log in

The nature of the diversity of Antarctic fishes

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The species diversity of the Antarctic fish fauna changed notably during the ≈40 million years from the Eocene to the present. A taxonomically restricted and endemic modern fauna succeeded a taxonomically diverse and cosmopolitan Eocene fauna. Although the Southern Ocean is 10% of the world’s ocean, its current fish fauna consists of only 322 species, small considering the global diversity of ≈25,000–28,000 species. The fauna is “reasonably well-known” from a taxonomic perspective. This intermediate designation between “poorly known” and “well-known” indicates that new species are regularly being described. A conservative estimate of the number of undescribed species is ≈30–60; many of these may be liparids. On the Antarctic continental shelf and upper slope the fauna includes 222 species from 19 families of benthic fishes. The most speciose taxa are notothenioids, liparids and zoarcids, accounting for 88% of species diversity. Endemism for Antarctic species is also, coincidentally, 88%, at least threefold higher than in faunas from other isolated marine localities. Eight notothenioid families, including five that are primarily Antarctic, encompass a total of 44 genera and 129 species, 101 Antarctic and 28 non-Antarctic. The 101 Antarctic species make up 45% of the benthic species diversity in the Antarctic region. However, at the highest latitudes, notothenioids contribute 77% of the species diversity, 92% of the abundance and 91% of the biomass. Although species diversity is low compared to other shelf habitats, the nature of the adaptive radiation in organismal diversity among notothenioids is noteworthy in the marine realm. In some notothenioid clades phyletic diversification was accompanied by considerable morphological and ecological diversification. The exemplar is the benthic family Nototheniidae that underwent a habitat or depth related diversification centred on the alteration of buoyancy. They occupy an array of pelagic and benthopelagic habitats at various depths on the shelf and upper slope. Diversification in buoyancy is the hallmark of the nototheniid radiation and, in the absence of swim bladders, was accomplished by a combination of reduced skeletal mineralisation and lipid deposition. Although neutral buoyancy is found in only five species of nototheniids some, like Pleuragramma antarcticum, are abundant and ecologically important. Much work remains to be done in order to frame and to use phylogenetically based statistical methods to test hypotheses relating to the key features of the notothenioid radiation. To reach this analytical phase more completely resolved cladograms that include phyletically basal and non-Antarctic species are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson ME (1988) Studies on the Zoarcidae (Teleostei: Perciformes) of the southern hemisphere. I. The Antarctic and subantarctic regions. In: Kornicker LS (ed) Antarctic research series, vol 47, Biology of the Antarctic seas XIX. American Geophysical Union, Washington, pp 59–113

  • Anderson ME (1991) Studies on the Zoarcidae (Teleostei: Perciformes) of the southern hemisphere. V. Two new species from the Weddell Sea, Antarctica. Cybium 15:151–158

    Google Scholar 

  • Anderson ME (1994) Systematics and osteology of the Zoarcidae (Teleostei: Perciformes). Ichthyol Bull JLB Smith Inst Ichthyol 60:1–120

    Google Scholar 

  • Anderson JB (1999) Antarctic marine geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Andriashev AP (1965) A general review of the Antarctic fish fauna. In: van Oye P, van Mieghem J (eds) Biogeography and ecology in Antarctica, monographiae biologicae, vol XV. Junk, The Hague, pp 491–550

  • Andriashev AP (1986) Review of the snailfish genus Paraliparis (Scorpaeniformes: Liparididae) of the Southern Ocean. Theses zoologicae, vol 7. Koeltz, Koenigstein

  • Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Proceedings of fifth congress of European ichthyologists, Stockholm, 1985. Swedish Museum of Natural History, Stockholm, pp 357–372

  • Andriashev AP (1991) Possible pathways of Paraliparis (Pisces: Liparididae) and some other North Pacific secondarily deep-sea fishes into North Atlantic and Arctic depths. Polar Biol 11:213–218

    Article  Google Scholar 

  • Andriashev AP (2003) Liparid fishes (Liparidae, Scorpaeniformes) of the Southern Ocean and adjacent waters. Series “Biological results of the Russian antarctic expeditions”, vol 9. Explorations of the fauna of the seas, vol 53(61). Russian Academy of Sciences, Zoological Institute, St. Petersburg

  • Andriashev AP, Stein DL (1998) Review of the snailfish genus Careproctus (Liparidae, Scorpaeniformes) in Antarctic and adjacent waters. Contrib Sci Nat Hist Mus Los Angeles Co 470:1–63

    Google Scholar 

  • Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  • Balushkin AV (1984) Morphological bases of the systematics and phylogeny of the nototheniid fishes. Acad Sci USSR Zool Inst Leningrad, pp 1–140

    Google Scholar 

  • Balushkin AV (1989) Gvozdarus svetovidovi gen. et sp. n. (Pisces, Nototheniidae) from the Ross Sea (Antarctic). Zool Zh 68:83–88

    Google Scholar 

  • Balushkin AV (1994) Proeleginops grandeastmanorum gen. et sp. nov. (Perciformes, Notothenioidei, Eleginopsidae) from the Late Eocene of Seymour Island (Antarctica) is a fossil notothenioid, not a gadiform. J Ichthyol 34(8):10–23

    Google Scholar 

  • Balushkin AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J Ichthyol 40 [Suppl 1]:S74–S109

    Google Scholar 

  • Balushkin AV, Voskoboinikova OS (1990) A new family, Bathylutichthyidae (Cottoidei, Scorpaeniformes), for the deepwater fish Bathylutichthys taranetzi gen. et sp. nov. from South Georgia Island (Antarctica). J Ichthyol 30:67–75

    Google Scholar 

  • Bargelloni L, Marcato S, Zane L, Patarnello T (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol 49:114–129

    Article  CAS  PubMed  Google Scholar 

  • Berra TM (1997) Some 20th century fish discoveries. Environ Biol Fish 50:1–12

    Article  Google Scholar 

  • Brandt A (1999) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca). Sci Mar 63 [Suppl 1]:261–274

    Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Briggs JC (1995) Global biogeography. Elsevier, Amsterdam

    Google Scholar 

  • Briggs JC (2003) Marine centres of origin as evolutionary engines. J Biogeogr 30:1–18

    Article  Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology, and behavior: a research program in comparative biology. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago

    Google Scholar 

  • Burchett MS (1983) Morphology and morphometry of the Antarctic nototheniid Notothenia rossii marmorata. Br Antarct Surv Bull 58:71–81

    PubMed  Google Scholar 

  • Casaux R, Barrera-Oro E, Baroni A, Ramón A (2003) Ecology of inshore notothenioid fish from the Danco Coast, Antarctic Peninsula. Polar Biol 26:157–165

    Article  Google Scholar 

  • Case JA (1992) Evidence from fossil vertebrates for a rich Eocene Antarctic marine environment. In: Kennett JP, Warnke DA (eds) The Antarctic paleoenvironment: a perspective on global change, part one, Antarctic research series, vol 56. American Geophysical Union, Washington, pp 119–130

  • Chen L, DeVries AL, Cheng C-HC (1997a) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816

    Article  CAS  PubMed  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997b) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Nat Acad Sci USA 94:3817–3822

    Article  CAS  PubMed  Google Scholar 

  • Chen W-J, Bonillo C, Lecointre G (1998) Phylogeny of the Channichthyidae (Notothenioidei, Teleostei) based on two mitochondrial genes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Milan Berlin Heidelberg, pp 287–298

    Google Scholar 

  • Chen W-J, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-HC (1998) Origin and mechanism of evolution of antifreeze glycoproteins in polar fishes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Milan Berlin Heidelberg, pp 311–328

    Google Scholar 

  • Cheng C-HC, DeVries AL (2002) Origin and evolution of fish antifreeze proteins. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. World Scientific, Singapore, pp 83–107

    Google Scholar 

  • Cheng C-HC, Chen L, Near TJ, Jin Y (2003) Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Mol Biol Evol 20:1897–1908

    Article  CAS  PubMed  Google Scholar 

  • Chernova NV (2001) A review of the genus Psednos (Pisces, Liparidae) with description of ten new species from the North Atlantic and southwestern Indian Ocean. Bull Mus Comp Zool 155:477–507

    Google Scholar 

  • Chernova NV, Duhamel G (2003) A new species and additional records of Paraliparis (Scorpaeniformes: Liparidae) from the Southern Ocean with a provisional field key to juveniles. Cybium 27:137–151

    Google Scholar 

  • Chernova NV, Eastman JT (2001) Two new species of snailfish genus Paraliparis (Pisces: Liparidae) from the Ross Sea, Antarctica. J Fish Biol 59:92–104

    Article  Google Scholar 

  • Chernova NV, Stein DL, Andriashev AP (2004) Family Liparidae Scopoli 1777—snailfishes. Calif Acad Sci Annotated Checklists of Fishes 31:1–72

    Google Scholar 

  • Cione AL, Reguero MA, Elliot DH (2001) A large osteichthyan vertebra from the Eocene of Antarctica. Neues Jb Geol Palaontol Mh 2001:543–552

    Google Scholar 

  • Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114

    Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW III (1995) Genomic remnants of α-globin genes in the hemoglobinless antarctic icefishes. Proc Natl Acad Sci USA 92:1817–1821

    CAS  PubMed  Google Scholar 

  • Cohen DM (1970) How many recent fishes are there? Proc Calif Acad Sci 38:341–346

    Google Scholar 

  • Committee on Biological Diversity in Marine Systems (1995) Understanding marine biodiversity: a research agenda for the nation. National Academy Press, Washington

    Google Scholar 

  • Daniels RA (1978) Nesting behaviour of Harpagifer bispinis in Arthur Harbour, Antarctic Peninsula. J Fish Biol 12:465–474

    Google Scholar 

  • Daniels RA (1979) Nest guard replacement in the Antarctic fish Harpagifer bispinis: possible altruistic behavior. Science 205:831–833

    Google Scholar 

  • Derome N, Chen W-J, Dettaï A, Bonillo C, Lecointre G (2002) Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Mol Phylogenet Evol 24:139–152

    Article  CAS  PubMed  Google Scholar 

  • Detrich HW III (2000) Recent evolution of the hemoglobinless condition of the Antarctic icefishes. In: di Prisco G, Giardina B, Weber RE (eds) Hemoglobin function in vertebrates: molecular adaptation in extreme and temperate environments. Springer, Milan Berlin Heidelberg, pp 39–49

    Google Scholar 

  • Dettaï A, Lecointre G (2004) In search of notothenioid (Teleostei) relatives. Antarct Sci 16:71–85

    Article  Google Scholar 

  • DeVries AL (1988) The role of antifreeze glycopeptides and peptides in the freezing avoidance of Antarctic fishes. Comp Biochem Physiol 90B:611–621

    CAS  Google Scholar 

  • DeVries AL, Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271:352–353

    Google Scholar 

  • DeWitt HH (1970) The character of the midwater fish fauna of the Ross Sea, Antarctica. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic Press, London, pp 305–314

  • DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic map folio series, folio 15. American Geographical Society, New York, pp 1–10

    Google Scholar 

  • DeWitt HH (1985) Reports on fishes of the University of Southern California Antarctic Research Program, 1962–1968. 1. A review of the genus Bathydraco Günther (family Bathydraconidae). Cybium 9:295–314

    Google Scholar 

  • DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331

    Google Scholar 

  • di Prisco G, Cocca E, Parker SK, Detrich HW III (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191

    Article  PubMed  Google Scholar 

  • Eakin RR, Eastman JT, Jones CD (2001) Mental barbel variation in Pogonophryne scotti Regan (Pisces: Perciformes: Artedidraconidae). Antarct Sci 13:363–370

    Article  Google Scholar 

  • Eastman JT (1985) Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol 4:155–160

    Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Eastman JT (1999) Aspects of the biology of the icefish Dacodraco hunteri (Notothenioidei, Channichthyidae) in the Ross Sea, Antarctica. Polar Biol 21:194–196

    Article  Google Scholar 

  • Eastman JT (2000) Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarct Sci 12:276–287

    Google Scholar 

  • Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of nonAntarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: A biological overview. Springer, Milan Berlin Heidelberg, pp 3–26

    Google Scholar 

  • Eastman JT, DeVries AL (1981) Buoyancy adaptations in a swim-bladderless Antarctic fish. J Morphol 167:91–102

    Google Scholar 

  • Eastman JT, DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 2:385–393

    Google Scholar 

  • Eastman JT, Eakin RR (2000) An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. Arch Fish Mar Res 48:11–20

    Google Scholar 

  • Eastman JT, Grande L (1991) Late Eocene gadiform (Teleostei) skull from Seymour Island, Antarctic Peninsula. Antarct Sci 3:87–95

    Google Scholar 

  • Eastman JT, Hubold G (1999) The fish fauna of the Ross Sea, Antarctica. Antarct Sci 11:293–304

    Google Scholar 

  • Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? J Fish Biol 57 [Suppl A]:84–102

    Article  Google Scholar 

  • Eastman JT, Sidell BD (2002) Measurements of buoyancy for some Antarctic notothenioid fishes from the South Shetland Islands. Polar Biol 25:753–760

    Google Scholar 

  • Ekau W (1990) Demersal fish fauna of the Weddell Sea, Antarctica. Antarct Sci 2:129–137

    Google Scholar 

  • Emery AR (1978) The basis of fish community structure: marine and freshwater comparisons. Env Biol Fish 3:33–47

    Google Scholar 

  • Eschmeyer WN (ed) (1998) Catalog of fishes, vol 1. California Academy of Sciences, San Francisco

  • Eschmeyer WN (2003) Introduction to the series annotated checklists of fishes. Calif Acad Sci Annotated Checklists of Fishes 1:1–5

    Google Scholar 

  • Fanta E, Rios FS, Donatti L, Cardoso WE (2003) Spatial and temporal variation in krill consumption by the Antarctic fish Notothenia coriiceps, in Admiralty Bay, King George Island. Antarct Sci 15:458–462

    Article  Google Scholar 

  • Foster BA, Montgomery JC (1993) Planktivory in benthic nototheniid fish in McMurdo Sound, Antarctica. Environ Biol Fish 36:313–318

    Google Scholar 

  • Fuiman LA, Davis RW, Williams TM (2002) Behavior of midwater fishes under Antarctic ice: observations by a predator. Mar Biol 140:815–822

    Article  Google Scholar 

  • García ML, Menni RC (1996) Notothenia trigramma (Pisces: Nototheniidae) in southern Argentina. Neotropica 42:125

    Google Scholar 

  • Gon O (1990) Bathydraconidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 364–380

    Google Scholar 

  • Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown

  • Grande L, Chatterjee S (1987) New Cretaceous fish fossils from Seymour Island, Antarctic Peninsula. Palaeontology 30:829–837

    Google Scholar 

  • Greenwood PH (1992) Are the major fish faunas well-known? Neth J Zool 42:131–138

    Google Scholar 

  • Hagen W, Kattner G, Friedrich C (2000) The lipid compositions of high-Antarctic notothenioid fish species with different life strategies. Polar Biol 23:785–791

    Article  Google Scholar 

  • Hourigan TF, Radtke RL (1989) Reproduction in the Antarctic fish Nototheniops nudifrons. Mar Biol 100:277–283

    Google Scholar 

  • Hubold G (1984) Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner- and Larsen Ice Shelves (Weddell Sea/Antarctica). Polar Biol 3:231–236

    Google Scholar 

  • Hubold G (1992) Zur Ökologie der Fische im Weddellmeer. Ber Polarforsch 103:1–157

    Google Scholar 

  • Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Polar Res Tokyo Ser E 36:1–69

    Google Scholar 

  • Iwami T, Kock K-H (1990) Channichthyidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 381–399

    Google Scholar 

  • Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177

    Article  Google Scholar 

  • Kock K-H (1992) Antarctic fish and fisheries. Cambridge University Press, Cambridge

    Google Scholar 

  • La Mesa M, Vacchi M, Iwami T, Eastman JT (2002) Taxonomic studies of the Antarctic icefish genus Cryodraco Dollo, 1900 (Notothenioidei: Channichthyidae). Polar Biol 25:384–390

    Google Scholar 

  • La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338

    Article  Google Scholar 

  • Last PR, Balushkin AV, Hutchins JB (2002) Halaphritis platycephala (Notothenioidei: Bovichtidae): a new genus and species of temperate icefish from southeastern Australia. Copeia 2:433–440

    Google Scholar 

  • Laws RM (1985) The ecology of the Southern Ocean. Am Sci 73:26–40

    Google Scholar 

  • Long DJ, Stilwell JD (2000) Fish remains from the Eocene of Mount Discovery, East Antarctica. In: Stilwell JD, Feldmann RM (eds) Paleobiology and paleoenvironments of Eocene rocks, McMurdo Sound, East Antarctica, Antarctic research series, vol 76. American Geophysical Union, Washington, pp 349–353

  • Lundberg JG, Kottelat M, Smith GR, Stiassny MLJ, Gill AC (2000) So many fishes, so little time: an overview of recent ichthyological discovery in continental waters. Ann Mo Bot Gard 87:26–62

    Google Scholar 

  • Matallanas J (1998) Description of Careproctus guillemi n sp. (Pisces: Scorpaeniformes) from the Weddell Sea. J Fish Biol 52:380–385

    Article  Google Scholar 

  • Matallanas J (1999) New and rare snailfish genus Paraliparis from the Weddell Sea with the description of two new species. J Fish Biol 54:1017–1028

    Article  Google Scholar 

  • Matallanas J, Pequeño G (2000) A new snailfish species, Paraliparis orcadensis sp. nov. (Pisces: Scorpaeniformes) from the Scotia Sea (Southern Ocean). Polar Biol 23:298–300

    Article  Google Scholar 

  • Mayden RL (1992) An emerging revolution in comparative biology and the evolution of North American freshwater fishes. In: Mayden RL (ed) Systematics, historical ecology, and North American freshwater fishes. Stanford University Press, Stanford, pp 864–890

    Google Scholar 

  • McDowall RM (2003) Hawaiian biogeography and the islands’ freshwater fish fauna. J Biogeogr 30:703–710

    Article  Google Scholar 

  • Merrett NR, Haedrich RL (1997) Deep-sea demersal fish and fisheries. Chapman and Hall, London

    Google Scholar 

  • Miller RG (1993) History and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson City

    Google Scholar 

  • Moylan TJ, Sidell BD (2000) Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fishes. J Exp Biol 203:1277–1286

    CAS  PubMed  Google Scholar 

  • Near TJ, Pesavento JJ, Cheng C-HC (2003a) Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae). Mol Phylogenet Evol 28:87–98

    Article  CAS  PubMed  Google Scholar 

  • Near TJ, Russo SE, Jones CD, DeVries AL (2003b) Ontogenetic shift in buoyancy and habitat in the Antarctic toothfish, Dissostichus mawsoni (Perciformes: Nototheniidae). Polar Biol 26:124–128

    Google Scholar 

  • Near TJ, Kassler TW, Koppelman JB, Dillman CB, Philipp DP (2003c) Speciation in North American black basses, Micropterus (Actinopterygii: Centrarchidae). Evolution 57:1610–1621

    PubMed  Google Scholar 

  • Near TJ, Pesavento JJ, Cheng C-HC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phylogenet Evol 32:881–891

    Article  CAS  PubMed  Google Scholar 

  • Nelson JS (1994) Fishes of the world, 3rd edn. Wiley, New York

    Google Scholar 

  • Norman JR (1937) Coast fishes. Part II. The Patagonian region. Discov Rep 16:1–150

    CAS  Google Scholar 

  • North AW (1996) Locomotory activity and behaviour of the Antarctic teleost Notothenia coriiceps. Mar Biol 126:125–132

    Google Scholar 

  • O’Dor RK (2003) The unknown ocean: the baseline report of the Census of Marine Life research program. Consortium for Oceanographic Research and Education, Washington

    Google Scholar 

  • Ojeda FP, Labra FA, Muñoz AA (2000) Biogeographic patterns of Chilean littoral fishes. Rev Chil Hist Nat 73:625–641

    Google Scholar 

  • Oyarzún C, Campos PW, Valeria HR (1988) Adaptaciones para la flotabilidad en Dissostichus eleginoides Smitt, 1898 (Pisces, Perciformes, Nototheniidae). Invest Pesqui Barc 52:455–466

    Google Scholar 

  • Paulin C, Roberts C, Stewart A, McMillan P (1989) New Zealand fish: a complete guide. National Museum of New Zealand, miscellaneous series No 19, Wellington

    Google Scholar 

  • Prirodina VP (2000) On the systematic position of littoral and deep-water species of the genus Harpagifer (Harpagiferidae, Notothenioidei) from Macquarie Island with a description of two new species. J Ichthyol 40:488–494

    Google Scholar 

  • Prirodina VP (2002) Redescription of littoral and deep-sea species of the genus Harpagifer (Harpagiferidae, Notothenioidei) off islands of the Indian Ocean Sector of the Southern Ocean with the description of a new species. J Ichthyol 42:701–712

    Google Scholar 

  • Prirodina VP (2004) Harpagifer crozetensis sp. nova (Harpagiferidae, Notothenioidei), a new species from the littoral of the Crozet Islands (Indian Ocean Sector of the Antarctic). J Ichthyol 44:395–399

    Google Scholar 

  • Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268

    Google Scholar 

  • Ribbink AJ (1984) Is the species flock concept tenable? In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. University of Maine at Orono Press, Orono, pp 21–25

    Google Scholar 

  • Roberts TR (1982) Unculi (horny projections arising from single cells), an adaptive feature of the epidermis of ostariophysan fishes. Zool Screen 11:55–76

    Google Scholar 

  • Roberts CM (2002) Deep impact: the rising toll of fishing in the deep sea. Trends Ecol Evol 17:242–245

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Shandikov GA, Kratkiy VY (1990) Capture of a second specimen of Gvozdarus svetovidovi (Nototheniidae) in the Sodruzhestvo Sea (East Antarctica). J Ichthyol 30:143–147

    Google Scholar 

  • Sidell BD, Vayda ME, Small DJ, Moylan TJ, Londraville RL, Yuan M-L, Rodnick KJ, Eppley ZA, Costello L (1997) Variable expression of myoglobin among the hemoglobinless Antarctic fishes. Proc Natl Acad Sci USA 94:3420–3424

    Article  CAS  PubMed  Google Scholar 

  • Smith MM, Heemstra PC (eds) (1986) Smiths’ sea fishes. Macmillan South Africa, Johannesburg

  • Stankovic A, Spalik K, Kamler E, Borsuk P, Weglenski P (2002) Recent origin of sub-Antarctic notothenioids. Polar Biol 25:203–205

    Google Scholar 

  • Stein DL, Tompkins LS (1989) New species and new records of rare Antarctic Paraliparis fishes (Scorpaeniformes: Liparididae). Ichthyol Bull JLB Smith Inst Ichthyol 53:1–8

    Google Scholar 

  • Stein DL, Chernova NV, Andriashev AP (2001) Snailfishes (Pisces: Liparidae) of Australia, including descriptions of thirty new species. Rec Aust Mus 53:341–406

    Google Scholar 

  • Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131

    Article  Google Scholar 

  • Streelman JT, Alfaro M, Westneat MW, Bellwood DR, Karl SA (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56:961–971

    CAS  PubMed  Google Scholar 

  • Voronina EP, Neelov AV (2001) Structural traits of alimentary tract of fishes of the family Channichthyidae (Notothenioidei). J Ichthyol 41:778–788

    Google Scholar 

  • Voskoboinikova OS (1994) Rates of individual development of the bony skeleton of eleven species of the family Nototheniidae. J Ichthyol 34:108–120

    Google Scholar 

  • Voskoboinikova OS (2001) Evolutionary significance of heterochronies in the development of the bony skeleton in fishes of the suborder Notothenioidei (Perciformes). J Ichthyol 41:415–424

    Google Scholar 

  • Willis JC (1922) Age and area: a study in geographical distribution and origin of species. Cambridge University Press, Cambridge, p 195

    Google Scholar 

  • Wilson EO (1992) The diversity of life. Belknap Press, Cambridge, Mass.

    Google Scholar 

  • Wilson EO (2002) The future of life. Knopf, New York

    Google Scholar 

  • Yau C, Collins MA, Everson I (2000) Commensalism betwen a liparid fish (Careproctus sp.) and stone crabs (Lithodidae) photographed in situ using a baited camera. J Mar Biol Assoc UK 80:379–380

    Article  Google Scholar 

  • Zhao Y, Ratnayake-Lecamwasam M, Parker SK, Cocca E, Camardella L, di Prisco G, Detrich III HW (1998) The major adult α-globin gene of Antarctic teleosts and its remnants in the hemoglobinless icefishes: calibration of the mutational clock for nuclear genes. J Biol Chem 273:14745–14752

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Dr. G. Hempel and Dr. I. Hempel for inviting me to write this review. Dr. M. Eric Anderson and Dr. David Stein kindly provided comments and insight on numbers of undiscovered species for their particular groups. Dr. Guillaume Lecointre discussed and shared with me his unpublished data on notothenioid relationships. I thank the two reviewers for their helpful comments. I am also grateful to Danette Pratt for producing the figures. This work was supported by National Science Foundation grant OPP 94-16870 and an Ohio University Presidential Research Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Eastman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastman, J.T. The nature of the diversity of Antarctic fishes. Polar Biol 28, 93–107 (2005). https://doi.org/10.1007/s00300-004-0667-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-004-0667-4

Keywords

Navigation