Skip to main content

Advertisement

Log in

Biomechanical analysis of occlusal modes on the periodontal ligament while orthodontic force applied

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The study objective was to investigate four common occlusal modes by using the finite element (FE) method and to conduct a biomechanical analysis of the periodontal ligament (PDL) and surrounding bone when orthodontic force is applied.

Materials and methods

A complete mandibular FE model including teeth and the PDL was established on the basis of cone-beam computed tomography images of an artificial mandible. In the FE model, the left and right mandibular first premolars were not modeled because both canines required distal movement. In addition, four occlusal modes were simulated: incisal clench (INC), intercuspal position (ICP), right unilateral molar clench (RMOL), and right group function (RGF). The effects of these four occlusal modes on the von Mises stress and strain of the canine PDLs and bone were analyzed.

Results

Occlusal mode strongly influenced the distribution and value of von Mises strain in the canine PDLs. The maximum von Mises strain values on the canine PDLs were 0.396, 1.811, 0.398, and 1.121 for INC, ICP, RMOL, and RGF, respectively. The four occlusal modes had smaller effects on strain distribution in the cortical bone, cancellous bone, and miniscrews.

Conclusion

Occlusal mode strongly influenced von Mises strain on the canine PDLs when orthodontic force was applied.

Clinical relevance

When an FE model is used to analyze the biomechanical behavior of orthodontic treatments, the effect of muscle forces caused by occlusion must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cattaneo P, Dalstra M, Melsen B (2009) Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element. Orthod Craniofacial Res 12(2):120–128

    Article  Google Scholar 

  2. Chang H-W, Huang H-L, Yu J-H, Hsu J-T, Li Y-F, Wu Y-F (2012) Effects of orthodontic tooth movement on alveolar bone density. Clin Oral Investig 16(3):679–688

    Article  PubMed  Google Scholar 

  3. Will LA (2016) Orthodontic tooth movement: a historic prospective. In: Tooth Movement, vol 18. Karger Publishers, pp 46-55

  4. Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofac Orthop 129(4):458–468

    Article  Google Scholar 

  5. King G, Keeling S, Wronski T (1991) Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 12(6):401–409

    Article  PubMed  Google Scholar 

  6. Verna C, Zaffe D, Siciliani G (1999) Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone 24(4):371–379

    Article  PubMed  Google Scholar 

  7. Gelbke H (1951) The influence of pressure and tension on growing bone in experiments with animals. JBJS 33(4):947–954

    Article  Google Scholar 

  8. Bouton A, Simon Y, Goussard F, Teresi L, Sansalone V (2017) New finite element study protocol: clinical simulation of orthodontic tooth movement. Int Orthod 15(2):165–179

    PubMed  Google Scholar 

  9. Sardarian A, Shahidi S, Boushehri SG, Geramy A (2014) The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament—a finite element study. Prog Orthod 15(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sugii MM, Barreto BCF, Francisco Vieira-Junior W, Simone KRI, Bacchi A, Caldas RA (2018) Extruded upper first molar intrusion: comparison between unilateral and bilateral miniscrew anchorage. Dental Press J Orthod 23(1):63–70. https://doi.org/10.1590/2177-6709.23.1.063-070.oar

    Article  PubMed  PubMed Central  Google Scholar 

  11. Field C, Ichim I, Swain MV, Chan E, Darendeliler MA, Li W, Li Q (2009) Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop 135(2):174–181. https://doi.org/10.1016/j.ajodo.2007.03.032

    Article  PubMed  Google Scholar 

  12. Caballero GM, de Carvalho Filho OA, Hargreaves BO, de Araújo Brito HH, Junior PAAM, Oliveira DD (2015) Mandibular canine intrusion with the segmented arch technique: a finite element method study. Am J Orthod Dentofac Orthop 147(6):691–697

    Article  Google Scholar 

  13. Gerami A, Dadgar S, Rakhshan V, Jannati P, Sobouti F (2016) Displacement and force distribution of splinted and tilted mandibular anterior teeth under occlusal loads: an in silico 3D finite element analysis. Prog Orthod 17(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verna C, Cattaneo PM, Dalstra M (2018) Corticotomy affects both the modus and magnitude of orthodontic tooth movement. Eur J Orthod 40(1):107–112. https://doi.org/10.1093/ejo/cjx041

    Article  PubMed  Google Scholar 

  15. Papageorgiou SN, Keilig L, Vandevska-Radunovic V, Eliades T, Bourauel C (2017) Torque differences due to the material variation of the orthodontic appliance: a finite element study. Prog Orthod 18(1):6. https://doi.org/10.1186/s40510-017-0161-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cattaneo P, Dalstra M, Melsen B (2005) The finite element method: a tool to study orthodontic tooth movement. J Dent Res 84(5):428–433

    Article  PubMed  Google Scholar 

  17. Hartmann M, Dirk C, Reimann S, Keilig L, Konermann A, Jager A, Bourauel C (2017) Influence of tooth dimension on the initial mobility based on plaster casts and X-ray images : a numerical study. J Orofac Orthop 78(4):285–292. https://doi.org/10.1007/s00056-016-0082-9

    Article  PubMed  Google Scholar 

  18. Papageorgiou SN, Keilig L, Hasan I, Jäger A, Bourauel C (2016) Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis. Eur J Orthod 38(3):300–307

    Article  PubMed  Google Scholar 

  19. Melsen B, Cattaneo PM, Dalstra M, Kraft DC (2007) The importance of force levels in relation to tooth movement. In: Seminars in Orthodontics. Elsevier, pp 220-233

  20. de Souza FI, Poi WR, da Silva VF, Martini AP, Melo RA, Panzarini SR, Rocha EP (2015) Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis. Dent Traumatol 31(3):190–195. https://doi.org/10.1111/edt.12159

    Article  PubMed  Google Scholar 

  21. Wu J-H, Wang H-C, Chen C-M, Lu P-C, Lai S-T, Lee K-T, Du J-K (2011) Pullout strengths of orthodontic palatal mini-implants tested in vitro. J Dent Sci 6(4):200–204

    Article  Google Scholar 

  22. Poppe M, Bourauel C, Jäger A (2002) Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 63(5):358–370

    Article  PubMed  Google Scholar 

  23. Leung MT-C, Lee TC-K, Rabie ABM, Wong RW-K (2008) Use of miniscrews and miniplates in orthodontics. J Oral Maxillofac Surg 66(7):1461–1466

    Article  PubMed  Google Scholar 

  24. Kawarizadeh A, Bourauel C, Jäger A (2003) Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur J Orthod 25(6):569–578

    Article  PubMed  Google Scholar 

  25. Korioth T, Hannam A (1994) Deformation of the human mandible during simulated tooth clenching. J Dent Res 73(1):56–66

    Article  PubMed  Google Scholar 

  26. Huang H-L, Su K-C, Fuh L-J, Chen MY, Wu J, Tsai M-T, Hsu J-T (2015) Biomechanical analysis of a temporomandibular joint condylar prosthesis during various clenching tasks. J Cranio-Maxillofac Surg 43(7):1194–1201

    Article  Google Scholar 

  27. McCormack SW, Witzel U, Watson PJ, Fagan MJ, Groening F (2017) Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains. PLoS One 12(11):e0188707

    Article  PubMed  PubMed Central  Google Scholar 

  28. Toms SR, Lemons JE, Bartolucci AA, Eberhardt AW (2002) Nonlinear stress-strain behavior of periodontal ligament under orthodontic loading. Am J Orthod Dentofac Orthop 122(2):174–179

    Article  Google Scholar 

  29. Lin T-S, Tsai F-D, Chen C-Y, Lin L-W (2013) Factorial analysis of variables affecting bone stress adjacent to the orthodontic anchorage mini-implant with finite element analysis. Am J Orthod Dentofac Orthop 143(2):182–189

    Article  Google Scholar 

  30. Liu T-C, Chang C-H, Wong T-Y, Liu J-K (2012) Finite element analysis of miniscrew implants used for orthodontic anchorage. Am J Orthod Dentofac Orthop 141(4):468–476

    Article  Google Scholar 

  31. Motoyoshi M, Ueno S, Okazaki K, Shimizu N (2009) Bone stress for a mini-implant close to the roots of adjacent teeth-3D finite element analysis. Int J Oral Maxillofac Surg 38(4):363–368

    Article  PubMed  Google Scholar 

  32. Nguyen MV, Codrington J, Fletcher L, Dreyer CW, Sampson WJ (2017) Influence of cortical bone thickness on miniscrew microcrack formation. Am J Orthod Dentofac Orthop 152(3):301–311

    Article  Google Scholar 

  33. Kikuchi M, Korioth T, Hannam A (1997) The association among occlusal contacts, clenching effort, and bite force distribution in man. J Dent Res 76(6):1316–1325

    Article  PubMed  Google Scholar 

  34. Koolstra J, Van Eijden T (1992) Application and validation of a three-dimensional mathematical model of the human masticatory system in vivo. J Biomech 25(2):175–187

    Article  PubMed  Google Scholar 

  35. Koolstra J, Van Eijden T (1999) Three-dimensional dynamical capabilities of the human masticatory muscles. J Biomech 32(2):145–152

    Article  PubMed  Google Scholar 

  36. Prum G, Ten Bosch J, De Jongh H (1978) Jaw muscle EMG-activity and static loading of the mandible. J Biomech 11(8-9):389–395

    Article  Google Scholar 

  37. Van Eijden T, Brugman P, Weijs W, Oosting J (1990) Coactivation of jaw muscles: recruitment order and level as a function of bite force direction and magnitude. J Biomech 23(5):475–485

    Article  PubMed  Google Scholar 

  38. Shokrani P, Hashemi A, Bostan Shirin M, Oskui IZ (2020) Effect of geometric dimensions and material models of the periodontal ligament in orthodontic tooth movement. Orthod Craniofacial Res 23(4):404–412

    Article  Google Scholar 

  39. Nikkhoo M, Cheng C-H, Wang J-L, Niu C-C, Parnianpour M, Khalaf K (2020) The biomechanical response of the lower cervical spine post laminectomy: geometrically-parametric patient-specific finite element analyses. Journal of Medical and Biological Engineering:1-12

  40. Jokar H, Rouhi G, Abolfathi N (2020) The effects of splinting on the initial stability and displacement pattern of periodontio-integrated dental implants: a finite element investigation. J Med Biol Eng 40(5):719–726

    Article  Google Scholar 

  41. Hijazi L, Hejazi W, Darwich MA, Darwich K (2016) Finite element analysis of stress distribution on the mandible and condylar fracture osteosynthesis during various clenching tasks. Oral Maxillofac Surg 20(4):359–367

    Article  PubMed  Google Scholar 

  42. Gupta M, Madhok K, Kulshrestha R, Chain S, Kaur H, Yadav A (2020) Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements–a 3D FEM study. J Oral Biol Craniofac Res 10(4):758–763

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pöschke A, Krähling B, Failing K, Staszyk C (2018) Molecular characteristics of the equine periodontal ligament. Front Vet Sci 4:235

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zvackova I, Matalova E, Lesot H (2017) Regulators of collagen fibrillogenesis during molar development in the mouse. Front Physiol 8:554

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kaiser AH, Keilig L, Klein R, Bourauel C (2020) Parameter identification for the simulation of the periodontal ligament during the initial phase of orthodontic tooth movement. Comput Methods Biomech Biomed Engin:1–16

  46. Ziegler A, Keilig L, Kawarizadeh A, Jäger A, Bourauel C (2005) Numerical simulation of the biomechanical behaviour of multi-rooted teeth. Eur J Orthod 27(4):333–339

    Article  PubMed  Google Scholar 

  47. Kettenbeil A, Reimann S, Reichert C, Keilig L, Jäger A, Bourauel C (2013) Numerical simulation and biomechanical analysis of an orthodontically treated periodontally damaged dentition. J Orofac Orthop 74(6):480–493

    Article  PubMed  Google Scholar 

  48. Hsu J-T, Huang H-L, Tu M-G, Fuh L-J (2010) Effect of bone quality on the artificial temporomandibular joint condylar prosthesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(6):e1–e5

    Article  PubMed  Google Scholar 

  49. Scribante A, Montasser MA, Radwan ES, Bernardinelli L, Alcozer R, Gandini P, Sfondrini MF (2018) Reliability of orthodontic miniscrews: bending and maximum load of different Ti-6Al-4V titanium and stainless steel temporary anchorage devices (TADs). Materials 11(7):1138

    Article  PubMed Central  Google Scholar 

  50. Fill TS, Toogood RW, Major PW, Carey JP (2012) Analytically determined mechanical properties of, and models for the periodontal ligament: critical review of literature. J Biomech 45(1):9–16

    Article  PubMed  Google Scholar 

  51. Maminskas J, Puisys A, Kuoppala R, Raustia A, Juodzbalys G (2016) The prosthetic influence and biomechanics on peri-implant strain: a systematic literature review of finite element studies. J Oral Maxillofac Res 7(3):e4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Science and Technology, Taiwan (Grant number: MOST 108-2221-E-039-004), and China Medical University, Taiwan (Grant number: CMU109-MF-117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Ting Hsu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, MT., Huang, HL., Yang, SG. et al. Biomechanical analysis of occlusal modes on the periodontal ligament while orthodontic force applied. Clin Oral Invest 25, 5661–5670 (2021). https://doi.org/10.1007/s00784-021-03868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03868-x

Keywords

Navigation