Skip to main content

Advertisement

Log in

The Effects of Splinting on the Initial Stability and Displacement Pattern of Periodontio-Integrated Dental Implants: A Finite Element Investigation

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Even though the regeneration of periodontium tissue (PDT) around dental implants was of interest in recent years, this process was not investigated from a biomechanical point of view, to date. The purpose of this finite element study was to assess the impact of splinting technique on the initial stability and movement pattern of a tooth-shaped dental implant surrounded by periodontal ligament stem cells (PDLSCs) and was under occlusal forces.

Methods

A composite polymeric tooth-shaped dental implant, i.e., an artificial tooth model was constructed and connected to its adjacent teeth by two splints at the buccal and lingual sides. The displacement pattern of natural and artificial teeth under masticatory load, their center of rotation positions, and von Mises stresses for splints were calculated.

Results

Results of this study showed that splinting of a tooth-shaped dental implant can provide a tooth-like movement for the implant under masticatory loads, by up to 3.4 µm deviation in mesio-distal, 5.1 µm in bucco-lingual, and 9.5 µm in occluso-apical directions, compared with natural teeth. Also, it was shown that nickel-chrome splints have enough strength to provide the required initial stability for the artificial tooth under occlusal forces.

Conclusion

Based on this investigation, the splinting technique can provide enough stability and a tooth-like movement for a tooth-shaped dental implant under masticatory loads. It is speculated that by mimicking the shape and movement pattern of a natural tooth, the implant can transfer proper mechanical stimuli to the PDLSCs around its root, and consequently, would lead to proper regeneration of PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data supporting the results of this article are available.

Code Availability

No specific codes were written for this research.

References

  1. Moy, P. K., Medina, D., Shetty, V., & Aghaloo, T. L. (2005). Dental implant failure rates and associated risk factors. International Journal of Oral & Maxillofacial Implants, 20(4), 569–577.

    Google Scholar 

  2. Moraschini, V., Poubel, L. A. D. C., Ferreira, V. F., & Barboza, E. D. S. P. (2015). Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. International Journal of Oral and Maxillofacial Surgery, 44(3), 377–388. https://doi.org/10.1016/j.ijom.2014.10.023.

    Article  Google Scholar 

  3. Santander, S., Alcaine, C., Lyahyai, J., Perez, M. A., Rodellar, C., Doblare, M., et al. (2012). In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dental Materials Journal, 31(5), 843–850.

    Article  Google Scholar 

  4. Albrektsson, T., Branemark, P. I., Hansson, H. A., & Lindstrom, J. (1981). Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica, 52(2), 155–170.

    Article  Google Scholar 

  5. Nanci, A. (2013). Ten cate's oral histology: Development, structure, and function. Amsterdam: Elsevier.

    Google Scholar 

  6. Misch, C. E. (2007). A stress theorem for implant dentistry. In Contemporary implant dentistry (3rd ed.). St-Louis: Mosby Elsevier.

    Google Scholar 

  7. Sennerby, L., Rocci, A., Becker, W., Jonsson, L., Johansson, L. A., & Albrektsson, T. (2008). Short-term clinical results of Nobel Direct implants: a retrospective multicentre analysis. Clinical Oral Implants Research, 19(3), 219–226. https://doi.org/10.1111/j.1600-0501.2007.01410.x.

    Article  Google Scholar 

  8. Op Heij, D. G., Opdebeeck, H., van Steenberghe, D., & Quirynen, M. (2003). Age as compromising factor for implant insertion. Periodontology, 2000(33), 172–184.

    Article  Google Scholar 

  9. Percinoto, C., Vieira, A. E., Barbieri, C. M., Melhado, F. L., & Moreira, K. S. (2001). Use of dental implants in children: A literature review. Quintessence International, 32(5), 381–383.

    Google Scholar 

  10. Mittal, Y., Jindal, G., & Garg, S. (2016). Bone manipulation procedures in dental implants. Indian Journal of Dentistry, 7(2), 86–94. https://doi.org/10.4103/0975-962X.184650.

    Article  Google Scholar 

  11. Bhatnagar, V. M., Karani, J. T., Khanna, A., Badwaik, P., & Pai, A. (2015). Osseoperception: An implant mediated sensory motor control—A review. Journal of Clinical and Diagnostic Research: JCDR, 9(9), ZE18–ZE20. https://doi.org/10.7860/JCDR/2015/14349.6532.

    Article  Google Scholar 

  12. Mishra, S. K., Chowdhary, R., Chrcanovic, B. R., & Branemark, P. I. (2016). Osseoperception in dental implants: A systematic review. Journal of Prosthodontics, 25(3), 185–195. https://doi.org/10.1111/jopr.12310.

    Article  Google Scholar 

  13. Giannobile, W. V. (2010). Getting to the root of dental implant tissue engineering. Journal of Clinical Periodontology, 37(8), 747–749. https://doi.org/10.1111/j.1600-051X.2010.01589.x.

    Article  Google Scholar 

  14. Lindhe, J., Berglundh, T., Ericsson, I., Liljenberg, B., & Marinello, C. (1992). Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clinical Oral Implants Research, 3(1), 9–16.

    Article  Google Scholar 

  15. Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149–155. https://doi.org/10.1016/s0140-6736(04)16627-0.

    Article  Google Scholar 

  16. Gault, P., Black, A., Romette, J. L., Fuente, F., Schroeder, K., Thillou, F., et al. (2010). Tissue-engineered ligament: Implant constructs for tooth replacement. Journal of Clinical Periodontology, 37(8), 750–758. https://doi.org/10.1111/j.1600-051X.2010.01588.x.

    Article  Google Scholar 

  17. Lin, Y., Gallucci, G. O., Buser, D., Bosshardt, D., Belser, U. C., & Yelick, P. C. (2011). Bioengineered periodontal tissue formed on titanium dental implants. Journal of Dental Research, 90(2), 251–256. https://doi.org/10.1177/0022034510384872.

    Article  Google Scholar 

  18. Oshima, M., Inoue, K., Nakajima, K., Tachikawa, T., Yamazaki, H., Isobe, T., et al. (2014). Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy. Scientific Reports, 4, 6044. https://doi.org/10.1038/srep06044.

    Article  Google Scholar 

  19. Lutolf, M. P., Gilbert, P. M., & Blau, H. M. (2009). Designing materials to direct stem-cell fate. Nature, 462, 433. https://doi.org/10.1038/nature08602.

    Article  Google Scholar 

  20. Goetzke, R., Sechi, A., De Laporte, L., Neuss, S., & Wagner, W. (2018). Why the impact of mechanical stimuli on stem cells remains a challenge. Cellular and Molecular Life Sciences, 75(18), 3297–3312. https://doi.org/10.1007/s00018-018-2830-z.

    Article  Google Scholar 

  21. Oortgiesen, D. A., Yu, N., Bronckers, A. L., Yang, F., Walboomers, X. F., & Jansen, J. A. (2012). A three-dimensional cell culture model to study the mechano-biological behavior in periodontal ligament regeneration. Tissue Engineering Part C: Methods, 18(2), 81–89. https://doi.org/10.1089/ten.TEC.2011.0367.

    Article  Google Scholar 

  22. Kim, J. H., Kang, M. S., Eltohamy, M., Kim, T. H., & Kim, H. W. (2016). Dynamic mechanical and nanofibrous topological combinatory cues designed for periodontal ligament engineering. PLoS ONE, 11(3), e0149967. https://doi.org/10.1371/journal.pone.0149967.

    Article  Google Scholar 

  23. Javed, F., Ahmed, H. B., Crespi, R., & Romanos, G. E. (2013). Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interventional Medicine & Applied Science, 5(4), 162–167. https://doi.org/10.1556/IMAS.5.2013.4.3.

    Article  Google Scholar 

  24. Cardaropoli, D., & Gaveglio, L. (2007). The influence of orthodontic movement on periodontal tissues level. Seminars in Orthodontics, 13(4), 234–245. https://doi.org/10.1053/j.sodo.2007.08.005.

    Article  Google Scholar 

  25. Dolgov, V. Y., Klyshnikov, K. Y., Ovcharenko, E. A., Glushkova, T. V., Batranin, A. V., Agienko, A. S., et al. (2019). Finite element analysis-based approach for prediction of aneurysm-prone arterial segments. Journal of Medical and Biological Engineering, 39(1), 102–108. https://doi.org/10.1007/s40846-018-0422-x.

    Article  Google Scholar 

  26. Marinozzi, F., Bini, F., De Paolis, A., De Luca, R., & Marinozzi, A. (2015). Effects of hip osteoarthritis on mechanical stimulation of trabecular bone: A Finite Element Study. Journal of Medical and Biological Engineering, 35(4), 535–544. https://doi.org/10.1007/s40846-015-0061-4.

    Article  Google Scholar 

  27. Rouhi, G., Tahani, M., Haghighi, B., & Herzog, W. (2015). Prediction of stress shielding around orthopedic screws: Time-dependent bone remodeling analysis using finite element approach. Journal of Medical and Biological Engineering, 35(4), 545–554. https://doi.org/10.1007/s40846-015-0066-z.

    Article  Google Scholar 

  28. Zargham, A., Geramy, A., & Rouhi, G. (2016). Evaluation of long-term orthodontic tooth movement considering bone remodeling process and in the presence of alveolar bone loss using finite element method. Orthodontic Waves, 75(4), 85–96. https://doi.org/10.1016/j.odw.2016.09.001.

    Article  Google Scholar 

  29. Ho, S. P., Marshall, S. J., Ryder, M. I., & Marshall, G. W. (2007). The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials, 28(35), 5238–5245. https://doi.org/10.1016/j.biomaterials.2007.08.031.

    Article  Google Scholar 

  30. Natali, A. N., Pavan, P. G., & Scarpa, C. (2004). Numerical analysis of tooth mobility: Formulation of a non-linear constitutive law for the periodontal ligament. Dental Materials, 20(7), 623–629. https://doi.org/10.1016/j.dental.2003.08.003.

    Article  Google Scholar 

  31. Pietrzak, G., Curnier, A., Botsis, J., Scherrer, S., Wiskott, A., & Belser, U. (2002). A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility. Computer Methods in Biomechanics & Biomedical Engineering, 5(2), 91–100. https://doi.org/10.1080/10255840290032117.

    Article  Google Scholar 

  32. Kato, S., Nakagaki, H., Kunisaki, H., Sugihara, N., Noguchi, T., Ito, F., et al. (1992). The thickness of the sound and periodontally diseased human cementum. Archives of Oral Biology, 37(8), 675–676. https://doi.org/10.1016/0003-9969(92)90132-r.

    Article  Google Scholar 

  33. Ho, S. P., Goodis, H., Balooch, M., Nonomura, G., Marshall, S. J., & Marshall, G. (2004). The effect of sample preparation technique on determination of structure and nanomechanical properties of human cementum hard tissue. Biomaterials, 25(19), 4847–4857. https://doi.org/10.1016/j.biomaterials.2003.11.047.

    Article  Google Scholar 

  34. Naveh, G. R., Lev-Tov Chattah, N., Zaslansky, P., Shahar, R., & Weiner, S. (2012). Tooth-PDL-bone complex: Response to compressive loads encountered during mastication—A review. Archives of Oral Biology, 57(12), 1575–1584. https://doi.org/10.1016/j.archoralbio.2012.07.006.

    Article  Google Scholar 

  35. Nishihira, M., Yamamoto, K., Sato, Y., Ishikawa, H., & Natali, A. N. (2003). Mechanics of periodontal ligament. In A. N. Natali (Ed.), Dental biomechanics. Bristol, PA: Taylor and Francis Inc.

    Google Scholar 

  36. Pegoretti, A., Fambri, L., Zappini, G., & Bianchetti, M. (2002). Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials, 23(13), 2667–2682. https://doi.org/10.1016/S0142-9612(01)00407-0.

    Article  Google Scholar 

  37. Ho, S. P., Balooch, M., Goodis, H. E., Marshall, G. W., & Marshall, S. J. (2004). Ultrastructure and nanomechanical properties of cementum dentin junction. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68(2), 343–351. https://doi.org/10.1002/jbm.a.20061.

    Article  Google Scholar 

  38. Zhao, Y., Wang, W., Xin, H., Zang, S., Zhang, Z., & Wu, Y. (2013). The remodeling of alveolar bone supporting the mandibular first molar with different levels of periodontal attachment. Medical & Biological Engineering & Computing, 51(9), 991–997. https://doi.org/10.1007/s11517-013-1078-x.

    Article  Google Scholar 

  39. De Groot, R., Peters, M. C., De Haan, Y. M., Dop, G. J., & Plasschaert, A. J. (1987). Failure stress criteria for composite resin. Journal of Dental Research, 66(12), 1748–1752. https://doi.org/10.1177/00220345870660121001.

    Article  Google Scholar 

  40. Brunski, J. B. (1992). Biomechanical factors affecting the bone-dental implant interface. Clinical Materials, 10(3), 153–201.

    Article  Google Scholar 

  41. Maceri, F., Martignoni, M., & Vairo, G. (2007). Mechanical behaviour of endodontic restorations with multiple prefabricated posts: A finite-element approach. Journal of Biomechanics, 40(11), 2386–2398. https://doi.org/10.1016/j.jbiomech.2006.11.018.

    Article  Google Scholar 

  42. Ren, L. M., Wang, W. X., Takao, Y., & Chen, Z. X. (2010). Effects of cementum-dentine junction and cementum on the mechanical response of tooth supporting structure. Journal of Dentistry, 38(11), 882–891. https://doi.org/10.1016/j.jdent.2010.07.013.

    Article  Google Scholar 

  43. Huang, H., Yang, R., & Zhou, Y. H. (2018). Mechanobiology of periodontal ligament stem cells in orthodontic tooth movement. Stem Cells International, 2018, 6531216. https://doi.org/10.1155/2018/6531216.

    Article  Google Scholar 

  44. Zhang, C., Li, J., Zhang, L., Zhou, Y., Hou, W., Quan, H., et al. (2012). Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Archives of Oral Biology, 57(10), 1395–1407. https://doi.org/10.1016/j.archoralbio.2012.04.010.

    Article  Google Scholar 

  45. Shen, T., Qiu, L., Chang, H., Yang, Y., Jian, C., Xiong, J., et al. (2014). Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. International Journal of Clinical and Experimental Pathology, 7(11), 7872–7880.

    Google Scholar 

  46. Chen, Y. J., Huang, C. H., Lee, I. C., Lee, Y. T., Chen, M. H., & Young, T. H. (2008). Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connective Tissue Research, 49(1), 7–14. https://doi.org/10.1080/03008200701818561.

    Article  Google Scholar 

  47. Khani, M. M., Tafazzoli-Shadpour, M., Rostami, M., Peirovi, H., & Janmaleki, M. (2014). Evaluation of mechanical properties of human mesenchymal stem cells during differentiation to smooth muscle cells. Annals of Biomedical Engineering, 42(7), 1373–1380. https://doi.org/10.1007/s10439-013-0889-0.

    Article  Google Scholar 

  48. Natali, A. N., Carniel, E. L., & Pavan, P. G. (2009). Investigation of viscoelastoplastic response of bone tissue in oral implants press fit process. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91(2), 868–875. https://doi.org/10.1002/jbm.b.31469.

    Article  Google Scholar 

  49. Greenstein, G., Cavallaro, J., Romanos, G., & Tarnow, D. (2008). Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: A review. Journal of Periodontology, 79(8), 1317–1329. https://doi.org/10.1902/jop.2008.070067.

    Article  Google Scholar 

  50. Davies, J. E. (1998). Mechanisms of endosseous integration. International Journal of Prosthodontics, 11(5), 391–401.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Amirkabir University of Technology, Iran.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HJ, GR, and NA. The first draft of the manuscript was written by HJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gholamreza Rouhi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jokar, H., Rouhi, G. & Abolfathi, N. The Effects of Splinting on the Initial Stability and Displacement Pattern of Periodontio-Integrated Dental Implants: A Finite Element Investigation. J. Med. Biol. Eng. 40, 719–726 (2020). https://doi.org/10.1007/s40846-020-00544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-020-00544-5

Keywords

Navigation