Skip to main content

Advertisement

Log in

Heating and preheating of dental restorative materials—a systematic review

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To perform a review on the influence of preheating and/or heating of resinous and ionomeric materials on their physical and mechanical properties and to discuss the benefits and methods of preheating/heating that have been used.

Material and methods

A search was performed in the Pubmed, Scopus, Scielo, and gray literature databases. In vitro studies published from 1980 until now were searched using the descriptors “composite resins OR glass ionomer cements OR resin cements OR adhesives AND heating OR preheating.” Data extraction and quality of work evaluation were performed by two independent evaluators.

Results

At the end of reading the search titles and abstracts, 74 articles were selected. Preheating of composite resins reduces viscosity, facilitates adaptation to cavity preparation walls, increases the degree of conversion, and decreases the polymerization shrinkage. Preheating of resin cements improves strength, adhesion, and degree of conversion. Dental adhesives showed good results such as higher bond strength to dentin. However, unlike resinous materials, ionomeric materials have an increase in viscosity upon heating.

Conclusions

Preheating improves the mechanical and physical properties. However, there is a lack of clinical studies to confirm the advantages of preheating technique.

Clinical relevance

Preheating of dental restorative materials is a simple, safe, and successful technique. In order to achieve good results, agility and training are necessary so the material would not lose heat until the restorative procedure. Also, care is necessary to avoid bubbles and formation of gaps, which compromises the best restoration performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Amorim RG, Leal SC, Frencken JE (2012) Survival of atraumatic restorative treatment (ART) sealants and restorations: a meta-analysis. Clin Oral Investig 16(2):429–441. https://doi.org/10.1007/s00784-011-0513-3

    Article  PubMed  Google Scholar 

  2. Lempel EE, Tóth Á, Fábián T, Krajczár K, Szalma J (2015) Retrospective evaluation of posterior direct composite restorations: 10-year findings. Dent Mater 31(2):115–122. https://doi.org/10.1016/j.dental.2014.11.001

    Article  PubMed  Google Scholar 

  3. Mangani F, Marini S, Barabanti N, Preti A, Cerutti A (2015) The success of indirect restorations in posterior teeth: a systematic review of the literature. Minerva Stomatol. 64(5):231–240

    PubMed  Google Scholar 

  4. De Souza GM, Braga RR, Cesar PF, Lopes GC (2015) Correlation between clinical performance and degree of conversion of resin cements: a literature review. J Appl Oral Sci 23(4):358–368. https://doi.org/10.1590/1678-775720140524

    Article  PubMed  Google Scholar 

  5. Dias AGA, Magno MB, Delbem ACB, Cunha RF, Maia LC, Pessan JP (2018) Clinical performance of glass ionomer cement and composite resin in Class II restorations in primary teeth: a systematic review and meta-analysis. J Dent 73(6):1–13. https://doi.org/10.1016/j.jdent.2018.04.004

    Article  PubMed  Google Scholar 

  6. Demarco FF, Collares K, Correa MB, de Cenci RR, Moraes MS, Opdam NJ (2017) Should my composite restorations last forever? Why are they failing? Braz Oral Res 31(suppl 1):92–99. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0056

    Article  Google Scholar 

  7. Cumerlato CBF, Demarco FF, Barros AJD, Peres MA, Peres KG, Cascaes AM, Camargo MBJ, dos Santos IS, Matijasevich A, Corrêa MB (2019) Reasons for direct restoration failure from childhood to adolescence: a birth cohort study. J Dent 89:103183. https://doi.org/10.1016/j.jdent.2019.103183

    Article  PubMed  Google Scholar 

  8. Ferracane JL (2011) Resin composite - state of the art. Dent Mater 27(1):29–38. https://doi.org/10.1016/j.dental.2010.10.020

    Article  PubMed  Google Scholar 

  9. Gorseta K, Borzabadi-Farahani A, Moshaverinia A, Glavina D, Lynch E (2017) Effect of different thermo–light polymerization on flexural strength of two glass ionomer cements and a glass carbomer cement. J Prosthet Dent 118(1):102–107. https://doi.org/10.1016/j.prosdent.2016.09.019

    Article  PubMed  Google Scholar 

  10. Rueggeberg FA, Giannini M, Arrais CAG, Price RBT (2017) Light curing in dentistry and clinical implications: a literature review. 31(suppl1):64–91. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061

  11. Rosenberg JM (2017) Minimally invasive dentistry: a conservative approach to smile makeover. Compend Contin Educ Dent 38(1):38–42

    PubMed  Google Scholar 

  12. Bausch JR, de Lange C, Davidson CL (1981) The influence of temperature on some physical properties of dental composites. J Oral Rehabil 8(4):309–317. https://doi.org/10.1111/j.1365-2842.1981.tb00505.x

    Article  PubMed  Google Scholar 

  13. Lovell LG, Newman SM, Bowman CN (1999) The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res 78(8):1469–1476. https://doi.org/10.1177/00220345990780081301

    Article  PubMed  Google Scholar 

  14. Deb S, Di Silvio L, MacKler HE, Millar BJ (2011) Pre-warming of dental composites. Dent Mater 27(4):e51–e59. https://doi.org/10.1016/j.dental.2010.11.009

    Article  PubMed  Google Scholar 

  15. Tauböck TT, Tarle Z, Marovic D, Attin T (2015) Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. J Dent 43(11):1358–1364. https://doi.org/10.1016/j.jdent.2015.07.014

    Article  PubMed  Google Scholar 

  16. Fróes-Salgado NR, Silva LM, Kawano Y, Francci C, Reis A, Loguercio AD (2010) Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent Mater 26(9):908–914. https://doi.org/10.1016/j.dental.2010.03.023

    Article  PubMed  Google Scholar 

  17. Dionysopoulos D, Papadopoulos C, Koliniotou-Koumpia E (2015) Effect of temperature, curing time, and filler composition on surface microhardness of composite resins. J Conserv Dent 18(2):114–118. https://doi.org/10.4103/0972-0707.153071

    Article  PubMed  PubMed Central  Google Scholar 

  18. Theodoridis M, Dionysopoulos D, Koliniotou-Koumpia E, Dionysopoulos P, Gerasimou P (2017) Effect of preheating and shade on surface microhardness of silorane-based composites. J Investig Clin Dent 8(2):1–6. https://doi.org/10.1111/jicd.12204

    Article  Google Scholar 

  19. Coelho NF, Barbon FJ, Machado RG, Bocato N, Moraes RR (2019) Response of composite resins to preheating and the resulting strengthening of luted feldspar ceramic. Dent Mater 35(10):1430–1438. https://doi.org/10.1016/j.dental.2019.07.021

    Article  PubMed  Google Scholar 

  20. Abdulmajeed AA, Donovan TE, Cook R, Sulaiman TA (2019) Effect of preheating and fatiguing on mechanical properties of bulk-fill and conventional composite resin. Oper Dent 45:387–395. https://doi.org/10.2341/19-092-l

    Article  Google Scholar 

  21. Yang J, Silikas N, Watts DC (2019) Pre-heating effects on extrusion force, stickiness and packability of resin-based composite. Dent Mater 35(11):1594–1602. https://doi.org/10.1016/j.dental.2019.08.101

    Article  PubMed  Google Scholar 

  22. Davari A, Daneshkazemi A, Behniafar B, Sheshmani M (2014) Effect of pre-heating on microtensile bond strength of composite resin to dentin. J Dent 11(5):569–575

    Google Scholar 

  23. Sharafeddin F, Nouri H, Koohpeima F (2015) The effect of temperature on shear bond strength of Clearfil SE Bond and Adper Single Bond adhesive systems to dentin. J Dent 16(1):10–16

    Google Scholar 

  24. Mohammadi N, Jafari-Navimipour E, Kimyai S, Ajami AA, Bahari M, Ansarin M, Ansarin M (2016) Effect of pre-heating on the mechanical properties of silorane-based and methacrylate-based composites. J Clin Exp Dent 8(4):373–378. https://doi.org/10.4317/jced.52807

    Article  Google Scholar 

  25. Vale MR, Afonso FA, Borges BC, Freitas AC Jr, Farias-Neto A, Almeida EO, Souza-Junior EJ, Geraldeli S (2014) Preheating impact on the degree of conversion and water sorption/solubility of selected single-bottle adhesive systems. Oper Dent 39(6):637–643. https://doi.org/10.2341/13-201-L

    Article  PubMed  Google Scholar 

  26. Sharafeddin F, Motamedi M, Fattah Z (2015) Effect of preheating and precooling on the flexural strength and modulus of elasticity of nanohybrid and silorane-based composite. J Dent 16:224–229

    Google Scholar 

  27. Theobaldo JD, Aguiar FHB, Pini NIP, Lima DANL, Liporoni PCS, Catelan A (2017) Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite. Clin Cosmet Investig Dent 9:39–43. https://doi.org/10.2147/CCIDE.S130803

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goulart M, Borges Veleda B, Damin D, Bovi Ambrosano GM, Coelho de Souza FH, Erhardt MCG (2018) Preheated composite resin used as a luting agent for indirect restorations: effects on bond strength and resin-dentin interfaces. Int J Esthet Dent 13(1):86–97

    PubMed  Google Scholar 

  29. Gavic L, Gorseta K, Glavina D, Czarnecka B, Nicholson JW (2015) Heat transfer properties and thermal cure of glass-ionomer dental cements. J Mater Sci Mater Med 26(10):1–6. https://doi.org/10.1007/s10856-015-5578-0

    Article  Google Scholar 

  30. Gorseta K, Glavina D, Skrinjaric I (2012) Influence of ultrasonic excitation and heat application on the microleakage of glass ionomer cements. Aust Dent J 57(4):453–457. https://doi.org/10.1111/j.1834-7819.2012.01724.x

    Article  PubMed  Google Scholar 

  31. O’Brien T, Shoja-Assadi F, Lea SC, Burke FJ, Palin WM (2010) Extrinsic energy sources affect hardness through depth during set of a glass-ionomer cement. J Dent 38(6):490–495. https://doi.org/10.1016/j.jdent.2010.03.004

    Article  PubMed  Google Scholar 

  32. OHAT (2015) OHAT Risk of bias rating tool for human and animal studies, 1–37. https://ntp.niehs.nih.gov/ntp/ohat/pubs/riskofbiastool_508.pdf. Accessed 14 Aug 2019

  33. Holanda DB, França FM, do Amaral FL, Flório FM, Basting RT (2013) Influence of preheating the bonding agent of a conventional three-step adhesive system and the light activated resin cement on dentin bond strength. J Conserv Dent 16(6):536–539. https://doi.org/10.4103/0972-0707.120965

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reis A, Klein-Júnior CA, Accorinte M d L, Grande RH, dos Santos CB, Loguercio AD (2009) Effects of adhesive temperature on the early and 6-month dentin bonding. J Dent 37(10):791–798. https://doi.org/10.1016/j.jdent.2009.06.007

    Article  PubMed  Google Scholar 

  35. Dionysopoulos D, Tolidis K, Gerasimou P, Koliniotou-Koumpia E (2014) Effect of preheating on the film thickness of contemporary composite restorative materials. J Dent Sci 9(4):313–319. https://doi.org/10.1016/j.jds.2014.03.006

    Article  Google Scholar 

  36. Yang J, Silikas N, Watts DC (2020) Pre-heating time and exposure duration: Effects on post-irradiation properties of a thermo-viscous resin-composite. Dent Mater 36(6):787–793. https://doi.org/10.1016/j.dental.2020.03.025

    Article  PubMed  Google Scholar 

  37. da Costa J, McPharlin R, Hilton T, Ferracane J (2009) Effect of heat on the flow of commercial composites. Am J Dent 22(2):92–96

    PubMed  Google Scholar 

  38. Muñoz CA, Bond PR, Sy-Muñoz J, Tan D, Peterson J (2008) Effect of pre-heating on depth of cure and surface hardness of light-polymerized resin composites. Am J Dent 21(4):215–222

    PubMed  Google Scholar 

  39. Wagner W, Asku M, Neme AML, Linger JB, Pink FE, Walker S (2008) Effect of pre-heating resin composite on restoration microleakage. Oper Dent 33(1):72–78. https://doi.org/10.2341/07-41

    Article  PubMed  Google Scholar 

  40. Daronch M, Rueggeberg FA, Moss L, de Goes MF (2006) Clinically relevant issues related to preheating composites. J Esthet Restor Dent 18(6):340–350. https://doi.org/10.1111/j.1708-8240.2006.00046.x

    Article  PubMed  Google Scholar 

  41. Karaarslan ES, Usumez A, Ozturk B, Cebe MA (2012) Effect of cavity preparation techniques and different preheating procedures on microleakage of class V resin restorations. Eur J Dent 6(1):87–94. https://doi.org/10.1055/s-0039-1698935

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kramer MR, Edelhoff D, Stawarczyk B (2016) Flexural strength of preheated resin composites and bonding properties to glass-ceramic and dentin. Materials (Basel) 9(2):83. https://doi.org/10.3390/ma9020083

    Article  Google Scholar 

  43. Elsayad I (2009) Cuspal movement and gap formation in premolars restored with preheated resin composite. Oper Dent 34(6):725–731. https://doi.org/10.2341/09-012-L

    Article  PubMed  Google Scholar 

  44. El-Korashy DI (2010) Post-gel shrinkage strain and degree of conversion of preheated resin composite cured using different regimens. Oper Dent 35(2):172–179. https://doi.org/10.2341/09-072-L

    Article  PubMed  Google Scholar 

  45. Ayub KV, Santos GC Jr, Rizkalla AS, Bohay R, Pegoraro LF, Rubo JH, Santos MJ (2014) Effect of preheating on microhardness and viscosity of 4 resin composites. J Can Dent Assoc (Tor) 80:e12

    Google Scholar 

  46. Mundim FM, Garcia Lda F, Cruvinel DR, Lima FA, Bachmann L, Pires-de-Souza Fde C (2011) Color stability, opacity and degree of conversion of pre-heated composites. J Dent 39(Suppl 1):e25–e29. https://doi.org/10.1016/j.jdent.2010.12.001

    Article  PubMed  Google Scholar 

  47. Erhardt M, Goulart M, Jacques RC, Rodrigues JA, Pfeifer CS (2020) Effect of different composite modulation protocols on the conversion and polymerization stress profile of bulk-filled resin restorations. Dent Mater 36(7):829–837. https://doi.org/10.1016/j.dental.2020.03.019

    Article  PubMed  Google Scholar 

  48. Knezevic A, Zeljezic D, Kopjar N, Duarte S Jr, Par M, Tarle Z (2018) Toxicity of pre-heated composites polymerized directly and through CAD/CAM overlay. Acta Stomatol Croat 52(3):203–217. https://doi.org/10.15644/asc52/3/4

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tantbirojn D, Chongvisal S, Augustson DG, Versluis A (2011) Hardness and postgel shrinkage of preheated composites. Quintessence Int 42(3):51–60

    Google Scholar 

  50. El-Deeb HA, Abd El-Aziz S, Mobarak EH (2015) Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin. J Adv Res 6(3):471–478. https://doi.org/10.1016/j.jare.2014.11.013

    Article  PubMed  Google Scholar 

  51. Demirbuga S, Ucar FI, Cayabatmaz M, Zorba YO, Cantekin K, Topçuoğlu HS, Kilinc HI (2016) Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin. Scanning 38(1):63–69. https://doi.org/10.1002/sca.21242

    Article  PubMed  Google Scholar 

  52. Jafarzadeh-Kashi TS, Mirzaii M, Erfan M, Fazel A, Eskandarion S, Rakhshan V (2011) Polymerization behavior and thermal characteristics of two new composites at five temperatures: refrigeration to preheating. J Adv Prosthodont 3(4):216–220. https://doi.org/10.4047/jap.2011.3.4.216

    Article  PubMed  PubMed Central  Google Scholar 

  53. Uctasli MB, Arisu HD, Lasilla LV, Valittu PK (2008) Effect of preheating on the mechanical properties of resin composites. Eur J Dent 2(4):263–268. https://doi.org/10.1055/s-0039-1697390

    Article  PubMed  PubMed Central  Google Scholar 

  54. D’Amario M, De Angelis F, Vadini M, Marchili N, Mummolo S, D’Arcangelo C (2015) Influence of a repeated preheating procedure on mechanical properties of three resin composites. Oper Dent 40(2):181–189. https://doi.org/10.2341/13-238-L

    Article  PubMed  Google Scholar 

  55. D’Amario M, Pacioni S, Capogreco M, Gatto R, Baldi M (2013) Effect of repeated preheating cycles on flexural strength of resin composites. Oper Dent 38(1):33–38. https://doi.org/10.2341/11-476-L

    Article  PubMed  Google Scholar 

  56. Dionysopoulos D, Tolidis K, Gerasimou P (2016) The effect of composition, temperature and post-irradiation curing of bulk fill resin composites on polymerization efficiency. Mater Res 19(2):466–473. https://doi.org/10.1590/1980-5373-MR-2015-0614

    Article  Google Scholar 

  57. Prasanna N, Pallavi RY, Kavitha S, Lakshmi Narayanan L (2007) Degree of conversion and residual stress of preheated and room-temperature composites. Indian J Dent Res 18(4):173–176

    Article  Google Scholar 

  58. Choudhary N, Kamat S, Mangala TM, Thomas M (2011) Effect of pre-heating composite resin on gap formation at three different temperatures. J Conserv Dent 14(2):191–195. https://doi.org/10.4103/0972-0707.82618

    Article  PubMed  PubMed Central  Google Scholar 

  59. Osternack FH, Caldas DB, Almeida JB, Souza EM, Mazur RF (2013) Effects of preheating and precooling on the hardness and shrinkage of a composite resin cured with QTH and LED. Oper Dent 38(3):50–57. https://doi.org/10.2341/11-411-l

    Article  Google Scholar 

  60. Silva JC, Rogério Vieira R, Rege IC, Cruz CA, Vaz LG, Estrela C, Castro FL (2015) Pre-heating mitigates composite degradation. J Appl Oral Sci 23(6):571–579. https://doi.org/10.1590/1678-775720150284

    Article  PubMed  PubMed Central  Google Scholar 

  61. da Silva-Júnior ME, de Fz LR, Bagnato VS, Tonetto MR, Simões F, Borges ÁH, Bandéca MC, de Andrade MF (2018) Effect of the curing temperature of dental composites evaluated with a fluorescent dye. J Contemp Dent Pract 19(1):3–12. https://doi.org/10.5005/JP-JOURNALS-10024-2204

    Article  Google Scholar 

  62. Walter R, Swift EJ Jr, Sheikh H, Ferracane JL (2009) Effects of temperature on composite resin shrinkage. Quintessence Int 40(10):843–847

    PubMed  Google Scholar 

  63. Gugelmin BP, Miguel L, Baratto Filho F, Cunha L, Correr GM, Gonzaga CC (2020) Color stability of ceramic veneers luted with resin cements and pre-heated composites: 12 months follow-up. Braz Dent J 31(1):69–77. https://doi.org/10.1590/0103-6440202002842

    Article  PubMed  Google Scholar 

  64. Lohbauer U, Zinelis S, Rahiotis C, Petschelt A, Eliades G (2009) The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage. Dent Mater 25(4):514–519. https://doi.org/10.1016/j.dental.2008.10.006

    Article  PubMed  Google Scholar 

  65. Marcinkowska A, Gauza-Wlodarczyk M, Kubisz L, Hedzelek W (2017) The electrical properties and glass transition of some dental materials after temperature exposure. J Mater Sci Mater Med 28(12):186. https://doi.org/10.1007/s10856-017-5996-2

    Article  PubMed  Google Scholar 

  66. Elkaffass AA, Eltoukhy RI, Elnegoly SA, Mahmoud SH (2020) Influence of preheating on mechanical and surface properties of nanofilled resin composites. J Clin Exp Dent 12(5):e494–e500. https://doi.org/10.4317/jced.56469

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yan Z, Sidhu SK, Carrick TE, McCabe JF (2007) Response to thermal stimuli of glass ionomer cements. Dent Mater 23(5):597–600. https://doi.org/10.1016/j.dental.2006.05.001

    Article  PubMed  Google Scholar 

  68. Ebrahimi Chaharom ME, Bahari M, Safyari L, Safarvand H, Shafaei H, Jafari Navimipour E, Alizadeh Oskoee P, Ajami AA, Abed Kahnamouei M (2020) Effect of preheating on the cytotoxicity of bulk-fill composite resins. J Dent Res Dent Clin Dent Prospects 14(1):19–25. https://doi.org/10.34172/joddd.2020.003

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karacan AO, Ozyurt P (2019) Effect of preheated bulk-fill composite temperature on intrapulpal temperature increase in vitro. J Esthet Restor Dent 31(6):583–588. https://doi.org/10.1111/jerd.12503

    Article  PubMed  Google Scholar 

  70. Lima MO, Catelan A, Marchi GM, Lima DANL, Martins LRM, Aguiar FHB (2018) Influence of pre-heating and ceramic thickness on physical properties of luting agents. J Appl Biomater Funct Mater 16:252–259. https://doi.org/10.1177/2280800018782842

    Article  PubMed  Google Scholar 

  71. Trujillo M, Newman SM, Stansbury JW (2004) Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent Mater 20(8):766–777. https://doi.org/10.1016/j.dental.2004.02.003

    Article  PubMed  Google Scholar 

  72. Lucey S, Lynch CD, Ray NJ, Burke FM, Hannigan A (2010) Effect of pre-heating on the viscosity and microhardness of a resin composite. J Oral Rehabil 37(4):278–282. https://doi.org/10.1111/j.1365-2842.2009.02045.x

    Article  PubMed  Google Scholar 

  73. Daronch M, Rueggeberg F, De Goes MF (2005) Monomer conversion of pre-heated composite. J Dent Res 84(7):663–667. https://doi.org/10.1177/154405910508400716

    Article  PubMed  Google Scholar 

  74. dos Santos RE, Lima AF, Soares GP, Ambrosano GM, Marchi GM, Lovadino JR, Aguiar FH (2011) Effect of preheating resin composite and light-curing units on the microleakage of class II restorations submitted to thermocycling. Oper Dent 36(1):60–65. https://doi.org/10.2341/10-226-LR1

    Article  PubMed  Google Scholar 

  75. Watts DC, Alnazzawi A (2014) Temperature-dependent polymerization shrinkage stress kinetics of resin-composites. Dent Mater 30(6):654–660. https://doi.org/10.1016/j.dental.2014.03.004

    Article  PubMed  Google Scholar 

  76. Jongsma LA, Kleverlaan CJ (2015) Influence of temperature on volumetric shrinkage and contraction stress of dental composites. Dent Mater 31(6):721–725. https://doi.org/10.1016/j.dental.2015.03.009

    Article  PubMed  Google Scholar 

  77. Abed Kahnamouei M, Gholizadeh S, Rikhtegaran S, Daneshpooy M, Kimyai S, Alizadeh Oskoee P, Rezaei Y (2017) Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins. J Dent Res Dent Clin Dent Prospects 11(4):222–228. https://doi.org/10.15171/joddd.2017.039

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ahn KH, Lim S, Kum KY, Chang SW (2015) Effect of preheating on the viscoelastic properties of dental composite under different deformation conditions. Dent Mater J 34(5):702–706. https://doi.org/10.4012/dmj.2015-042

    Article  PubMed  Google Scholar 

  79. Fabián Molina G, Cabral RJ, Mazzola I, Brain Lascano L, Frencken JE (2013) Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting. Biomed Res Int 2013:1–6. https://doi.org/10.1155/2013/838460

    Article  Google Scholar 

  80. Goršeta K, Škrinjarić T, Glavina D (2012) The effect of heating and ultrasound on the shear bond strength of glass ionomer cement. Coll Antropol 36(4):1307–1312

    PubMed  Google Scholar 

  81. Dionysopoulos D, Tolidis K, Sfeikos T, Karanasiou C, Parisi X (2017) Evaluation of surface microhardness and abrasion resistance of two dental glass ionomer cement materials after radiant heat treatment. Adv Mater Sci Eng 2017:1–8. https://doi.org/10.1155/2017/5824562

    Article  Google Scholar 

  82. Algera TJ, Kleverlaan CJ, Prahl-Andersen B, Feilzer AJ (2006) The influence of environmental conditions on the material properties of setting glass-ionomer cements. Dent Mater 22(9):852–856. https://doi.org/10.1016/j.dental.2005.11.013

    Article  PubMed  Google Scholar 

  83. Khoroushi M, Karvandi TM, Sadeghi R (2012) Effect of prewarming and/or delayed light activation on resin-modified glass ionomer bond strength to tooth structures. Oper Dent 37(1):54–62. https://doi.org/10.2341/11-137-L

    Article  PubMed  Google Scholar 

  84. Cantoro A, Goracci C, Carvalho CA, Coniglio I, Ferrari M (2009) Bonding potential of self-adhesive luting agents used at different temperatures to lute composite onlays. J Dent 37(6):454–461. https://doi.org/10.1016/j.jdent.2009.02.006

    Article  PubMed  Google Scholar 

  85. Alizadeh Oskoee P, Nooroloyouni A, Pornaghi Azar F, Sajjadi Oskoee J, Pirzadeh Ashraf A (2015) Effect of resin cement pre-heating on the push-out bond strength of fiber post to root canal dentin. J Dent Res Dent Clin Dent Prospects 9(4):233–238. https://doi.org/10.15171/joddd.2015.042

    Article  PubMed  PubMed Central  Google Scholar 

  86. Morais A, dos Santos ARA, Giannini M, Reis AF, Rodrigues JA, Arrais CAG (2012) Effect of pre-heated dual-cured resin cements on the bond strength of indirect restorations to dentin. Braz Oral Res 26(2):170–176. https://doi.org/10.1590/S1806-83242012000200014

    Article  PubMed  Google Scholar 

  87. Cantoro A, Goracci C, Papacchini F, Mazzitelli C, Fadda GM, Ferrari M (2008) Effect of pre-cure temperature on the bonding potential of self-etch and self-adhesive resin cements. Dent Mater 24(5):577–583. https://doi.org/10.1016/j.dental.2007.06.012

    Article  PubMed  Google Scholar 

  88. Gross DJ, Dávila-Sánchez A, Runnacles P, Zarpellon DC, Kiratcz F, Campagnoli EB, Alegría-Acevedo LF, Coelho U, Rueggeberg FA, Arrais C (2020) In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having Class V preparations after exposure to Polywave® LED light curing units. Dent Mater S0109-5641(20):30168–30168. https://doi.org/10.1016/j.dental.2020.05.015

    Article  Google Scholar 

  89. Daronch M, Rueggeberg FA, De Goes MF, Giudici R (2006) Polymerization kinetics of pre-heated composite. J Dent Res 85(1):38–43. https://doi.org/10.1177/154405910608500106

    Article  PubMed  Google Scholar 

  90. Almeida LN, Mendes GAM, Favarão IN, Kasuya AVB, Borges MG, Menezes MS, Fonseca RB (2018) Influence of preheating and post-curing on a novel fiber-reinforced composite post material. Braz Oral Res 32:e97. https://doi.org/10.1590/1807-3107bor-2018.vol32.0097

    Article  PubMed  Google Scholar 

  91. Zhao S, Qian Y, Liu H, Jiang L, Zhou L (2012) The effect of preheating on light cured resin composites. J Hard Tissue Biol 21(3):273–278. https://doi.org/10.2485/jhtb.21.273

    Article  Google Scholar 

  92. Ban S, Takahashi Y, Tanase H, Hasegawa J (1990) Heat curing investigated behavior of light-cured by dynamic differential composite resins scanning calorimetry. Dent Mater J 9(2):153–162. https://doi.org/10.4012/dmj.9.153

    Article  PubMed  Google Scholar 

  93. França FÁ, de Oliveira M, Rodrigues JA, Arrais CAG (2011) Pre-heated dual-cured resin cements: analysis of the degree of conversion and ultimate tensile strength. Braz Oral Res 25(2):174–179. https://doi.org/10.1590/S1806-83242011000200013

    Article  PubMed  Google Scholar 

  94. Caiado ACRL, Azevedo CGS, Giannini M, De Goes MF, Rueggeberg FA (2019) In vivo measurement of root canal wall temperature at different stages prior to fiber post cementation. Eur J Dent 13(1):69–74. https://doi.org/10.1055/s-0039-1688539

    Article  PubMed  PubMed Central  Google Scholar 

  95. Saraiva LO, Aguiar TR, Costa L, Cavalcanti AN, Giannini M, Mathias P (2015) Influence of intraoral temperature and relative humidity on the dentin bond strength: An in situ study. J Esthet Restor Dent 27(2):92–99. https://doi.org/10.1111/jerd.12098

    Article  PubMed  Google Scholar 

  96. Nicholson JW, Czarnecka B (2009) Role of aluminum in glass-ionomer dental cements and its biological effects. J Biomater Appl 24(4):293–308. https://doi.org/10.1177/0885328209344441

    Article  PubMed  Google Scholar 

  97. Wasson EA, Nicholson JW (1993) New aspects of the setting of glass-ionomer cements. J Dent Res 72(2):481–483. https://doi.org/10.1177/00220345930720020201

    Article  PubMed  Google Scholar 

  98. Shahid S, Billington RW, Pearson GJ (2008) The role of glass composition in the behaviour of glass acetic acid and glass lactic acid cements. J Mater Sci Mater Med 19(2):541–545. https://doi.org/10.1007/s10856-007-0160-z

    Article  PubMed  Google Scholar 

  99. Xie D, Brantley WA, Culbertson BM, Wang G (2000) Mechanical properties and microstructures of glass-ionomer cements. Dent Mater 16(2):129–138. https://doi.org/10.1016/S0109-5641(99)00093-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Sano Suga Terada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, L.C.P., Terada, R.S.S., Tsuzuki, F.M. et al. Heating and preheating of dental restorative materials—a systematic review. Clin Oral Invest 24, 4225–4235 (2020). https://doi.org/10.1007/s00784-020-03637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03637-2

Keywords

Navigation