Skip to main content

Advertisement

Log in

Apical pressure created during irrigation with the GentleWave™ system compared to conventional syringe irrigation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study is to compare pressures at the apical foramen created by conventional syringe irrigation and the GentleWave™ System, which releases high-velocity degassed irrigants to the pulp chamber and uses broad-spectrum sound energy for cleaning.

Materials and methods

The apical pressure generated during irrigation was measured for palatal and distobuccal root canals of four extracted maxillary molars after no instrumentation, minimal instrumentation to a size #15/.04, instrumentation to a size #40/.04 taper, and after perforating the apical foramen to size #40. The root canals opened into an air-tight custom fixture coupled to a piezoresistive pressure transducer. Apical pressures were measured for the GentleWave™ System and syringe-needle irrigation at different irrigant flow rates, with the needle tip at 1 and 3 mm from the apical foramen using 30-gauge (G) open-ended or side-vented safety tip needles.

Results

The GentleWave™ System generated negative apical pressures (P < 0.001 compared with syringe irrigation); the mean pressures were between −13.07 and −17.19 mmHg. The 30 G needles could not reach the 1 and 3 mm from the working length in uninstrumented and 1 mm in minimally instrumented canals. The mean positive pressures between 6.46 and 110.34 mmHg were measured with needle irrigation depending on the flow rate, needle insertion depth, and size of the root canal.

Conclusions

The GentleWave™ System creates negative pressure at the apical foramen during root canal cleaning irrespective of the size of canal instrumentation. Positive apical pressures were measured for syringe irrigation.

Clinical relevance

Negative pressure during irrigation contributes to improved safety as compared to high-positive pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sjogren U, Hagglund B, Sundqvist G, Wing K (1990) Factors affecting the long-term results of endodontic treatment. J Endod 16:498–504. doi:10.1016/S0099-2399(07)80180-4

    Article  PubMed  Google Scholar 

  2. Basmadjian-Charles CL, Farge P, Bourgeois DM, Lebrun T (2002) Factors influencing the long-term results of endodontic treatment: a review of the literature. Int Dent J 52:81–86. doi:10.1111/j.1875-595X.2002.tb00605.x

    Article  PubMed  Google Scholar 

  3. Zehnder M (2006) Root canal irrigants. J Endod 32:389–398. doi:10.1016/j.joen.2005.09.014

    Article  PubMed  Google Scholar 

  4. Haapasalo M, Shen Y, Qian W, Gao Y (2010) Irrigation in endodontics. Dent Clin N Am 54:291–312. doi:10.1016/j.cden.2009.12.001

    Article  PubMed  Google Scholar 

  5. Gutierrez JH, Garcia J (1968) Microscopic and macroscopic investigation on results of mechanical preparation of root canals. Oral Surg Oral Med Oral Pathol 25:108–116. doi:10.1016/0030-4220(68)90204-1

    Article  PubMed  Google Scholar 

  6. Card SJ, Sigurdsson A, Orstavik D, Trope M (2002) The effectiveness of increased apical enlargement in reducing intracanal bacteria. J Endod 28:779–783. doi:10.1097/00004770-200211000-00008

    Article  PubMed  Google Scholar 

  7. Haapasalo M, Endal U, Zandi H, Coil JM (2005) Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Topics 10:77–102. doi:10.1111/j.1601-1546.2005.00135.x

    Article  Google Scholar 

  8. Gulabivala K, Patel B, Evans G, Ng YL (2005) Effects of mechanical and chemical procedures on root canal surfaces. Endod Topics 10:103–122. doi:10.1111/j.1601-1546.2005.00133.x

    Article  Google Scholar 

  9. Svec TA, Harrison JW (1977) Chemomechanical removal of pulpal and dentinal debris with sodium hypochlorite and hydrogen peroxide vs normal saline solution. J Endod 3:49–53. doi:10.1016/S0099-2399(77)80015-0

    Article  PubMed  Google Scholar 

  10. Siqueira Jr JF, Rocas IN (2008) Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 34:1291–1301. doi:10.1016/j.joen.2008.07.028

    Article  PubMed  Google Scholar 

  11. Ricucci D, Siqueira Jr JF (2010) Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod 36:1277–1288. doi:10.1016/j.joen.2010.04.007

    Article  PubMed  Google Scholar 

  12. Cunningham WT, Martin H (1982) A scanning electron microscope evaluation of root canal debridement with the endosonic ultrasonic synergistic system. Oral Surg Oral Med Oral Pathol 53:527–531

    Article  PubMed  Google Scholar 

  13. Sedgley CM, Nagel AC, Hall D, Applegate B (2005) Influence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro. Int Endod J 38:97–104. doi:10.1111/j.1365-2591.2004.00906

    Article  PubMed  Google Scholar 

  14. Boutsioukis C, Lambrianidis T, Kastrinakis E (2009) Irrigant flow within a prepared root canal using various flow rates: a computational fluid dynamics study. Int Endod J 42:144–155. doi:10.1111/j.1365-2591.2008.01503

    Article  PubMed  Google Scholar 

  15. Gao Y, Haapasalo M, Shen Y, Wu H, Li B, Ruse ND, Zhou X (2009) Development and validation of a three-dimensional computational fluid dynamics model of root canal irrigation. J Endod 35:1282–1287. doi:10.1016/j.joen.2009.06.018

    Article  PubMed  Google Scholar 

  16. Malentacca A, Uccioli U, Zangari D, Lajolo C, Fabiani C (2012) Efficacy and safety of various active irrigation devices when used with either positive or negative pressure: an in vitro study. J Endod 38:1622–1626. doi:10.1016/j.joen.2012.09.009

    Article  PubMed  Google Scholar 

  17. Psimma Z, Boutsioukis C, Kastrinakis E, Vasiliadis L (2013) Effect of needle insertion depth and root canal curvature on irrigant extrusion ex vivo. J Endod 39:521–524. doi:10.1016/j.joen.2012.12.018

    Article  PubMed  Google Scholar 

  18. Hulsmann M, Hahn W (2000) Complications during root canal irrigation–literature review and case reports. Int Endod J 33:186–193. doi:10.1046/j.1365-2591.2000.00303.x

    Article  PubMed  Google Scholar 

  19. Attin T, Buchalla W, Zirkel C, Lussi A (2002) Clinical evaluation of the cleansing properties of the noninstrumental technique for cleaning root canals. Int Endod J 35:929–933. doi:10.1046/j.1365-2591.2002.00591.x

    Article  PubMed  Google Scholar 

  20. Lussi A, Hotz M, Stich H (2004) The balanced force and the GT-rotary technique in comparison with the non-instrumental technique (NIT). Schweiz Monatsschr Zahnmed 114:12–18

    PubMed  Google Scholar 

  21. Schoeffel GJ (2007) The EndoVac method of endodontic irrigation: safety first. Dent Today 26:92–94 96

    PubMed  Google Scholar 

  22. Mitchell RP, Baumgartner JC, Sedgley CM (2011) Apical extrusion of sodium hypochlorite using different root canal irrigation systems. J Endod 37:1677–1681. doi:10.1016/j.joen.2011.09.004

    Article  PubMed  Google Scholar 

  23. Goode N, Khan S, Eid AA, Niu LN, Gosier J, Susin LF, Pashley DH, Tay FR (2013) Wall shear stress effects of different endodontic irrigation techniques and systems. J Dent 41:636–641. doi:10.1016/j.jdent.2013.04.007

    Article  PubMed  Google Scholar 

  24. Haapasalo M, Wang Z, Shen Y, Curtis A, Patel P, Khakpour M (2014) Tissue dissolution by a novel multisonic ultracleaning system and sodium hypochlorite. J Endod 40:1178–1181. doi:10.1016/j.joen.2013.12.029

    Article  PubMed  Google Scholar 

  25. Ma J, Shen Y, Yang Y, Gao Y, Wan P, Gan Y, Patel P, Curtis A, Khakpour M, Haapasalo M (2015) In vitro study of calcium hydroxide removal from mandibular molar root canals. J Endod 41:553–558. doi:10.1016/j.joen.2014.11.023

    Article  PubMed  Google Scholar 

  26. Khan S, Niu LN, Eid AA, Looney SW, Didato A, Roberts S, Pashley DH, Tay FR (2013) Periapical pressures developed by nonbinding irrigation needles at various irrigation delivery rates. J Endod 39:529–533. doi:10.1016/j.joen.2013.01.001

    Article  PubMed  Google Scholar 

  27. Park E, Shen Y, Khakpour M, Haapasalo M (2013) Apical pressure and extent of irrigant flow beyond the needle tip during positive-pressure irrigation in an in vitro root canal model. J Endod 39:511–515. doi:10.1016/j.joen.2012.12.004

    Article  PubMed  Google Scholar 

  28. Conard M (2012) A prospective study of fluid pressures of irrigation during root canal therapy. Ohio State University, Master Thesis, Columbus

    Google Scholar 

  29. Verhaagen B, Boutsioukis C, Heijnen GL, van der Sluis LWM, Versluis M (2002) Role of the confinement of a root canal on jet impingement during endodontic irrigation. Exp Fluids 53:1841–1853. doi:10.1007/s00348-012-1395-0

    Article  Google Scholar 

  30. Hubscher W, Barbakow F, Peters OA (2003) Root-canal preparation with FlexMaster: canal shapes analysed by micro-computed tomography. Int Endod J 36:740–747. doi:10.1046/j.1365-2591.2003.00723.x

    Article  PubMed  Google Scholar 

  31. Peters OA, Paque F (2011) Root canal preparation of maxillary molars with the self-adjusting file: a micro-computed tomography study. J Endod 37:53–57. doi:10.1016/j.joen.2010.08.047

    Article  PubMed  Google Scholar 

  32. Ng YL, Aung TH, Alavi A, Gulabivala K (2001) Root and canal morphology of Burmese maxillary molars. Int Endod J 34:620–630. doi:10.1046/j.1365-2591.2001.00438.x

    Article  PubMed  Google Scholar 

  33. Peters OA, Peters CI, Schonenberger K, Barbakow F (2003) ProTaper rotary root canal preparation: effects of canal anatomy on final shape analysed by micro CT. Int Endod J 36:86–92. doi:10.1046/j.1365-2591.2003.00626.x

    Article  PubMed  Google Scholar 

  34. Shen Y, Gao Y, Qian W, Ruse ND, Zhou X, Wu H, Haapasalo M (2010) Three-dimensional numeric simulation of root canal irrigant flow with different irrigation needles. J Endod 36:884–889. doi:10.1016/j.joen.2009.12.010

    Article  PubMed  Google Scholar 

  35. Boutsioukis C, Gogos C, Verhaagen B, Versluis M, Kastrinakis E, Van der Sluis LW (2010) The effect of apical preparation size on irrigant flow in root canals evaluated using an unsteady computational fluid dynamics model. Int Endod J 43:874–881. doi:10.1111/j.1365-2591.2010.01761

    Article  PubMed  Google Scholar 

  36. Khademi A, Yazdizadeh M, Feizianfard M (2006) Determination of the minimum instrumentation size for penetration of irrigants to the apical third of root canal systems. J Endod 32:417–420. doi:10.1016/j.joen.2005.11.008

    Article  PubMed  Google Scholar 

  37. Mickel AK, Chogle S, Liddle J, Huffaker K, Jones JJ (2007) The role of apical size determination and enlargement in the reduction of intracanal bacteria. J Endod 33:21–23. doi:10.1016/j.joen.2006.08.004

    Article  PubMed  Google Scholar 

  38. Huang TY, Gulabivala K, Ng YL (2008) A bio-molecular film ex-vivo model to evaluate the influence of canal dimensions and irrigation variables on the efficacy of irrigation. Int Endod J 41:60–71. doi:10.1111/j.1365-2591.2007.01317

    PubMed  Google Scholar 

  39. de Gregorio C, Arias A, Navarrete N, Del Rio V, Oltra E, Cohenca N (2013) Effect of apical size and taper on volume of irrigant delivered at working length with apical negative pressure at different root curvatures. J Endod 39:119–124. doi:10.1016/j.joen.2012.10.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Sonendo Inc.; start-up funds were provided by the Faculty of Dentistry, University of British Columbia, Canada, and Canada Foundation for Innovation (CFI fund; Project number 32623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Haapasalo.

Ethics declarations

Conflict of interest

One of the authors (M.H.) has commercial interest in the tested product. Three authors (A.C., P.P. and P.V.) are employees of Sonendo Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haapasalo, M., Shen, Y., Wang, Z. et al. Apical pressure created during irrigation with the GentleWave™ system compared to conventional syringe irrigation. Clin Oral Invest 20, 1525–1534 (2016). https://doi.org/10.1007/s00784-015-1632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1632-z

Keywords

Navigation