Skip to main content

Advertisement

Log in

Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Cell-based therapies for bone augmentation after tooth loss and for the treatment of periodontal defects improve healing defects. Usually, osteogenic cells or stem cells are cultivated in 2D primary cultures, before they are combined with scaffold materials, even though this means a loss of the endogenous 3D microenvironment for the cells. Moreover, the use of single-cell suspensions for the inoculation of scaffolds or for the direct application into an area of interest has the disadvantages of low initial cell numbers and susceptibility to unwanted cellular distribution, respectively.

Materials and methods

We addressed the question whether an alternative to monolayer cultures, namely 3D microtissues, has the potential to improve osteogenic tissue engineering and its clinical outcome.

Results

By contrast, to monolayer cultures, osteogenic differentiation of 3D microtissues is enhanced by mimicking in vivo conditions. It seems that the osteogenic differentiation in microtissues is enhanced by strong integrin–extracellular matrix interaction and by stronger autocrine BMP2 signaling. Moreover, microtissues are less prone to wash out by body fluids and allow the precise administration of large cell numbers.

Conclusion

Microtissue cultures have closer characteristics with cells in vivo and their enhanced osteogenic differentiation makes scaffold-free microtissues a promising concept in osteogenic tissue engineering.

Clinical relevance

Microtissues are particularly suitable for tissue engineering because they improve seeding efficiency of biomaterials by increasing the cell load of a scaffold. This results in accelerated osteogenic tissue formation and could contribute to earlier implant stability in mandibular bone augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sasso RC, LeHuec JC, Shaffrey C (2005) Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech 18(Suppl):S77–S81

    Article  PubMed  Google Scholar 

  2. Meyer U, Wiesmann HP, Berr K, Kubler NR, Handschel J (2006) Cell-based bone reconstruction therapies—principles of clinical approaches. Int J Oral Maxillofac Implants 21(6):899–906

    PubMed  Google Scholar 

  3. Petite H, Vandamme K, Monfoulet L, Logeart-Avramoglou D (2011) Strategies for improving the efficacy of bioengineered bone constructs: a perspective. Osteoporos Int 22(6):2017–2021

    Article  PubMed  Google Scholar 

  4. Zhang ZY, Teoh SH, Hui JH, Fisk NM, Choolani M, Chan JK (2012) The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 33(9):2656–2672

    Article  PubMed  Google Scholar 

  5. Zhang Z (2011) Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med 5(4):401–413

    Article  PubMed  Google Scholar 

  6. Abbott A (2003) Cell culture: biology’s new dimension. Nat 424(6951):870–872

    Article  Google Scholar 

  7. Burns JS, Rasmussen PL, Larsen KH, Schroder HD, Kassem M (2010) Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential. Tissue Eng Part A 16(7):2331–2342

    Article  PubMed  Google Scholar 

  8. Muraglia A, Corsi A, Riminucci M, Mastrogiacomo M, Cancedda R, Bianco P, Quarto R (2003) Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells. J Cell Sci 116(Pt 14):2949–2955

    Article  PubMed  Google Scholar 

  9. Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26(27):5509–5517

    Article  PubMed  Google Scholar 

  10. Boehrs J, Zaharias RS, Laffoon J, Ko YJ, Schneider GB (2008) Three-dimensional culture environments enhance osteoblast differentiation. J Prosthodont 17(7):517–521

    Article  PubMed  Google Scholar 

  11. Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW (2000) Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 18(9):954–958

    Article  PubMed  Google Scholar 

  12. Tortelli F, Cancedda R (2009) Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Eur Cell Mater 17:1–14

    PubMed  Google Scholar 

  13. Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79(1):1–23

    Article  PubMed  Google Scholar 

  14. Meyer U, Wiesmann HP, Libera J, Depprich R, Naujoks C, Handschel J (2012) Cartilage defect regeneration by ex vivo engineered autologous microtissue—preliminary results. Vivo 26(2):251–257

    Google Scholar 

  15. Arufe MC, De la Fuente A, Mateos J, Fuentes I, De Toro FJ, Blanco FJ (2011) Analysis of the chondrogenic potential and secretome of mesenchymal stem cells derived from human umbilical cord stroma. Stem Cells Dev 20(7):1199–1212

    Article  PubMed  Google Scholar 

  16. Estes BT, Diekman BO, Gimble JM, Guilak F (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5(7):1294–1311

    Article  PubMed  Google Scholar 

  17. Kafienah W, Al-Fayez F, Hollander AP, Barker MD (2003) Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach. Arthritis Rheum 48(3):709–718

    Article  PubMed  Google Scholar 

  18. Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862–869

    Article  PubMed  Google Scholar 

  19. Potter SW, Morris JE (1985) Development of mouse embryos in hanging drop culture. Anat Rec 211(1):48–56

    Article  PubMed  Google Scholar 

  20. Wobus AM, Wolf E, Beier HM (2000) Embryonic stem cells and nuclear transfer strategies. Present state and future prospects. Cells Tissues Organs 166(1):1–5

    Article  PubMed  Google Scholar 

  21. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83(2):173–180

    Article  PubMed  Google Scholar 

  22. Handschel J, Naujoks C, Langenbach F, Berr K, Depprich RA, Ommerborn MA, Kubler NR, Brinkmann M, Kogler G, Meyer U (2010) Comparison of ectopic bone formation of embryonic stem cells and cord blood stem cells in vivo. Tissue Eng Part A 16(8):2475–2483

    Article  PubMed  Google Scholar 

  23. Langenbach F, Berr K, Naujoks C, Hassel A, Hentschel M, Depprich R, Kubler NR, Meyer U, Wiesmann H-P, Kogler G, Handschel J (2011) Generation and differentiation of microtissues from multipotent precursor cells for use in tissue engineering. Nat Protocols 6(11):1726–1735

    Article  Google Scholar 

  24. Hildebrandt C, Buth H, Thielecke H (2011) A scaffold-free in vitro model for osteogenesis of human mesenchymal stem cells. Tissue Cell 43(2):91–100

    Article  PubMed  Google Scholar 

  25. Langenbach F, Naujoks C, Laser A, Kelz M, Kersten-Thiele P, Berr K, Depprich R, Kubler N, Kogler G, Handschel J (2012) Improvement of the cell-loading efficiency of biomaterials by inoculation with stem cell-based microspheres, in osteogenesis. J Biomater Appl 26(5):549–564

    Article  PubMed  Google Scholar 

  26. Handschel JG, Depprich RA, Kubler NR, Wiesmann HP, Ommerborn M, Meyer U (2007) Prospects of micromass culture technology in tissue engineering. Head Face Med 3:4

    Article  PubMed  Google Scholar 

  27. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell–matrix adhesions to the third dimension. Sci 294(5547):1708–1712

    Article  Google Scholar 

  28. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245

    Article  PubMed  Google Scholar 

  29. Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, Fry R, Samson LD, Tannenbaum SR, Griffith LG (2005) A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 6(6):569–591

    Article  PubMed  Google Scholar 

  30. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Sci 310(5751):1135–1138

    Article  Google Scholar 

  31. Kelm JM, Fussenegger M (2004) Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol 22(4):195–202

    Article  PubMed  Google Scholar 

  32. Garcia AJ (2005) Get a grip: integrins in cell–biomaterial interactions. Biomaterials 26(36):7525–7529

    Article  PubMed  Google Scholar 

  33. Heino J, Huhtala M, Kapyla J, Johnson MS (2009) Evolution of collagen-based adhesion systems. Int J Biochem Cell Biol 41(2):341–348

    Article  PubMed  Google Scholar 

  34. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280

    Article  PubMed  Google Scholar 

  35. Biggs MJ, Dalby MJ (2010) Focal adhesions in osteoneogenesis. Proc Inst Mech Eng H 224(12):1441–1453

    Article  PubMed  Google Scholar 

  36. Lim JY, Dreiss AD, Zhou Z, Hansen JC, Siedlecki CA, Hengstebeck RW, Cheng J, Winograd N, Donahue HJ (2007) The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 28(10):1787–1797

    Article  PubMed  Google Scholar 

  37. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280(39):33132–33140

    Article  PubMed  Google Scholar 

  38. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309(5737):1074–1078

    Article  PubMed  Google Scholar 

  39. Hong D, Chen HX, Xue Y, Li DM, Wan XC, Ge R, Li JC (2009) Osteoblastogenic effects of dexamethasone through upregulation of TAZ expression in rat mesenchymal stem cells. J Steroid Biochem Mol Biol 116(1–2):86–92

    Article  PubMed  Google Scholar 

  40. Phillips JE, Gersbach CA, Wojtowicz AM, Garcia AJ (2006) Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J Cell Sci 119(Pt 3):581–591

    Article  PubMed  Google Scholar 

  41. Franceschi RT, Iyer BS (1992) Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res 7(2):235–246

    Article  PubMed  Google Scholar 

  42. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res 17(1):101–110

    Article  PubMed  Google Scholar 

  43. Kundu AK, Khatiwala CB, Putnam AJ (2009) Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng Part A 15(2):273–283

    Article  PubMed  Google Scholar 

  44. Fatherazi S, Matsa-Dunn D, Foster BL, Rutherford RB, Somerman MJ, Presland RB (2009) Phosphate regulates osteopontin gene transcription. J Dent Res 88(1):39–44

    Article  PubMed  Google Scholar 

  45. Tada H, Nemoto E, Foster BL, Somerman MJ, Shimauchi H (2011) Phosphate increases bone morphogenetic protein-2 expression through cAMP-dependent protein kinase and ERK1/2 pathways in human dental pulp cells. Bone 48(6):1409–1416

    Article  PubMed  Google Scholar 

  46. Afzal F, Pratap J, Ito K, Ito Y, Stein JL, van Wijnen AJ, Stein GS, Lian JB, Javed A (2005) Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol 204(1):63–72

    Article  PubMed  Google Scholar 

  47. Payne KA, Meszaros LB, Phillippi JA, Huard J (2010) Effect of phosphatidyl inositol 3-kinase, extracellular signal-regulated kinases 1/2, and p38 mitogen-activated protein kinase inhibition on osteogenic differentiation of muscle-derived stem cells. Tissue Eng Part A 16(12):3647–3655

    Article  PubMed  Google Scholar 

  48. Ito T, Sawada R, Fujiwara Y, Tsuchiya T (2008) FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling. Cytotechnology 56(1):1–7

    Article  PubMed  Google Scholar 

  49. Maehata Y, Takamizawa S, Ozawa S, Kato Y, Sato S, Kubota E, Hata R (2006) Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biol 25(1):47–58

    Article  PubMed  Google Scholar 

  50. Siddappa R, Martens A, Doorn J, Leusink A, Olivo C, Licht R, van Rijn L, Gaspar C, Fodde R, Janssen F, van Blitterswijk C, de Boer J (2008) cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci U S A 105(20):7281–7286

    Article  PubMed  Google Scholar 

  51. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE (2004) Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004(1):24–34

    Article  PubMed  Google Scholar 

  52. Levi B, Nelson ER, Brown K, James AW, Xu D, Dunlevie R, Wu JC, Lee M, Wu B, Commons GW, Vistnes D, Longaker MT (2011) Differences in osteogenic differentiation of adipose-derived stromal cells from murine, canine, and human sources in vitro and in vivo. Plast Reconstr Surg 128(2):373–386

    Article  PubMed  Google Scholar 

  53. Zhang W, Deng ZL, Chen L, Zuo GW, Luo Q, Shi Q, Zhang BQ, Wagner ER, Rastegar F, Kim SH, Jiang W, Shen J, Huang E, Gao Y, Gao JL, Zhou JZ, Luo J, Huang J, Luo X, Bi Y, Su Y, Yang K, Liu H, Luu HH, Haydon RC, He TC, He BC (2010) Retinoic acids potentiate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One 5(7):e11917

    Article  PubMed  Google Scholar 

  54. Langenbach F, Naujoks C, Kersten-Thiele PV, Berr K, Depprich RA, Kubler NR, Kogler G, Handschel J (2010) Osteogenic differentiation influences stem cell migration out of scaffold-free microspheres. Tissue Eng Part A 16(2):759–766

    Article  PubMed  Google Scholar 

  55. Lammers L, Naujoks C, Berr K, Depprich R, Kubler N, Meyer U, Langenbach F, Luttenberg B, Kogler G, Wiesmann HP, Handschel J (2012) Impact of DAG stimulation on mineral synthesis, mineral structure and osteogenic differentiation of human cord blood stem cells. Stem Cell Res 8(2):193–205

    Article  PubMed  Google Scholar 

  56. Nagata T, Bellows CG, Kasugai S, Butler WT, Sodek J (1991) Biosynthesis of bone proteins [SPP-1 (secreted phosphoprotein-1, osteopontin), BSP (bone sialoprotein) and SPARC (osteonectin)] in association with mineralized-tissue formation by fetal-rat calvarial cells in culture. Biochem J 274(Pt 2):513–520

    PubMed  Google Scholar 

  57. Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y, Kataoka K (2009) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30(14):2705–2715

    Article  PubMed  Google Scholar 

  58. Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41(3):137–144

    Article  PubMed  Google Scholar 

  59. Leong L, Hughes PE, Schwartz MA, Ginsberg MH, Shattil SJ (1995) Integrin signaling: roles for the cytoplasmic tails of alpha IIb beta 3 in the tyrosine phosphorylation of pp 125FAK. J Cell Sci 108(Pt 12):3817–3825

    PubMed  Google Scholar 

  60. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    Article  PubMed  Google Scholar 

  61. Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT (1998) Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 273(49):32988–32994

    Article  PubMed  Google Scholar 

  62. Franceschi RT, Iyer BS, Cui Y (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res Off J Am Soc Bone Miner Res 9(6):843–854

    Article  Google Scholar 

  63. Naujoks C, Langenbach F, Berr K, Depprich R, Kubler N, Meyer U, Handschel J, Kogler G (2011) Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl 25(5):497–512

    Article  PubMed  Google Scholar 

  64. Holy CE, Shoichet MS, Davies JE (2000) Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 51(3):376–382

    Article  PubMed  Google Scholar 

  65. Bitar M, Brown RA, Salih V, Kidane AG, Knowles JC, Nazhat SN (2008) Effect of cell density on osteoblastic differentiation and matrix degradation of biomimetic dense collagen scaffolds. Biomacromolecules 9(1):129–135

    Article  PubMed  Google Scholar 

  66. Jahn K, Richards RG, Archer CW, Stoddart MJ (2010) Pellet culture model for human primary osteoblasts. Eur Cell Mater 20:149–161

    PubMed  Google Scholar 

  67. Kabiri M, Kul B, Lott WB, Futrega K, Ghanavi P, Upton Z, Doran MR (2012) 3D mesenchymal stem/stromal cell osteogenesis and autocrine signalling. Biochem Biophys Res Commun 419(2):142–147

    Article  PubMed  Google Scholar 

  68. Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT (2006) BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res 21(4):637–646

    Article  PubMed  Google Scholar 

  69. Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O'Brien CA, Economides AN, Stahl N, Jilka RL, Manolagas SC (2000) Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res 15(4):663–673

    Article  PubMed  Google Scholar 

  70. Robey PG (2011) Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng Part B Rev 17(6):423–430

    Article  PubMed  Google Scholar 

  71. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  PubMed  Google Scholar 

  72. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319

    Article  PubMed  Google Scholar 

  73. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40(6):1434–1446

    Article  PubMed  Google Scholar 

  74. Kelm JM, Breitbach M, Fischer G, Odermatt B, Agarkova I, Fleischmann BK, Hoerstrup SP (2012) 3D microtissue formation of undifferentiated bone marrow mesenchymal stem cells leads to elevated apoptosis. Tissue engineering Part A 18(7–8):692–702

    Article  PubMed  Google Scholar 

  75. Altmann B, Steinberg T, Giselbrecht S, Gottwald E, Tomakidi P, Bächle-Haas M, Kohal RJ (2011) Promotion of osteoblast differentiation in 3D biomaterial micro-chip arrays comprising fibronectin-coated poly(methyl methacrylate) polycarbonate. Biomaterials 32(34):8947–8956

    Article  PubMed  Google Scholar 

  76. Ferrera D, Poggi S, Biassoni C, Dickson GR, Astigiano S, Barbieri O, Favre A, Franzi AT, Strangio A, Federici A, Manduca P (2002) Three-dimensional cultures of normal human osteoblasts: proliferation and differentiation potential in vitro and upon ectopic implantation in nude mice. Bone 30(5):718–725

    Article  PubMed  Google Scholar 

  77. Kelm JM, Lorber V, Snedeker JG, Schmidt D, Broggini-Tenzer A, Weisstanner M, Odermatt B, Mol A, Zund G, Hoerstrup SP (2010) A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol 148(1):46–55

    Article  PubMed  Google Scholar 

  78. Kelm JM, Fussenegger M (2010) Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev 62(7–8):753–764

    Article  PubMed  Google Scholar 

  79. Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK (2011) Biologic interaction of three-dimensional periodontal fibroblast spheroids with collagen-based and synthetic membranes. J Periodontol 82(5):790–797

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review was supported in part by the Deutsche Forschungsgemeinschaft (DFG) grant HA 3228/3-1.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Naujoks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenbach, F., Naujoks, C., Smeets, R. et al. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Invest 17, 9–17 (2013). https://doi.org/10.1007/s00784-012-0763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0763-8

Keywords

Navigation