Skip to main content
Log in

Synthesis, characterization, antimicrobial and cytotoxic activity and DNA-binding properties of d-metal complexes with hydrazones of Girard’s T and P reagents

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this work synthesis, characterization and crystal structures of 1, Zn(II) complex ([ZnL1(NCS)2]), with (E)-1-(2-oxo-2-(2-(quinolin-2-ylmethylene)hydrazinyl)ethyl)pyridin-1-ium chloride (HL1Cl) and 2, Bi(III) complex ([BiHL2Cl4] × 1/2CH3OH), with (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(thiazol-2-yl)ethylidene)hydrazinyl)ethan-1-aminium chloride (HL2Cl), have been reported. Zn(II) complex possesses a distorted trigonal bipyramidal geometry while surroundings around Bi(III) ion are extended pentagonal bipyramidal. Antimicrobial activity, brine shrimp assay and DPPH radical scavenging activity of both complexes, including previously synthesized complexes with HL2Cl ligand (Zn(II) and Ni(II)) and complexes with (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium chloride (HL3Cl) (Zn(II), Cu(II), Cd(II), Co(II), Fe(III), Ni(II)), were evaluated. For the most active complexes, cytotoxic activity against five malignant cancer cell lines (HeLa, A375, MCF7, PC-3 and A549) and normal cell line HaCaT, as well as generation of reactive oxygen species (ROS), was tested.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qin W, Long S, Panunzio M, Biondi S (2013) Schiff bases: a short survey on an evergreen chemistry tool. Molecules 18:12264–12289. https://doi.org/10.3390/molecules181012264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shakdofa MME, Shtaiwi MH, Morsy N, Abdel-rassel TMA (2014) Metal complexes of hydrazones and their biological, analytical and catalytic applications: a review. Main Group Chem 13:187–218. https://doi.org/10.3233/MGC-140133

    Article  CAS  Google Scholar 

  3. Belkheiri N, Bouguerne B, Bedos-Belval F et al (2010) Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur J Med Chem 45:3019–3026. https://doi.org/10.1016/j.ejmech.2010.03.031

    Article  CAS  PubMed  Google Scholar 

  4. Kaushik D, Khan SA, Chawla G, Kumar S (2010) N’-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-substituted hydrazides: synthesis and anticonvulsant activity. Eur J Med Chem 45:3943–3949. https://doi.org/10.1016/j.ejmech.2010.05.049

    Article  CAS  PubMed  Google Scholar 

  5. Júnior WB, Alexandre-Moreira MS, Alves MA et al (2011) Analgesic and anti-inflammatory activities of salicylaldehyde 2-chlorobenzoyl hydrazone (H2LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H2LASSBio-1064) and their Zinc(II) complexes. Molecules 16:6902–6915. https://doi.org/10.3390/molecules16086902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Catto M, Aliano R, Carotti A et al (2010) Design, synthesis and biological evaluation of indane-2-arylhydrazinylmethylene-1,3-diones and indol-2-aryldiazenylmethylene-3-ones as β-amyloid aggregation inhibitors. Eur J Med Chem 45:1359–1366. https://doi.org/10.1016/j.ejmech.2009.12.029

    Article  CAS  PubMed  Google Scholar 

  7. Altintop MD, Sever B, Eklioğlu ÖA et al (2020) A series of furan-based hydrazones: design, synthesis, and evaluation of antimicrobial activity, cytotoxicity and genotoxicity. Lett Drug Des Discov 17:312–322. https://doi.org/10.2174/1570180816666190325163948

    Article  CAS  Google Scholar 

  8. Kocyigit-Kaymakcioglu B, Yazici SS, Tok F et al (2019) Synthesis and anticancer activity of new hydrazide-hydrazones and their Pd(II) complexes. Lett Drug Des Discov 16:522–532. https://doi.org/10.2174/1570180815666180816124102

    Article  CAS  Google Scholar 

  9. Rollas S, Küçükgüzel S (2007) Biological activities of hydrazone derivatives. Molecules 12:1910–1939. https://doi.org/10.3390/12081910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alam M, Verma G, Shaquiquzzaman M et al (2014) A review exploring biological activities of hydrazones. J Pharm Bioallied Sci 6:69–80. https://doi.org/10.4103/0975-7406.129170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adsule S, Barve V, Chen D et al (2006) Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J Med Chem 49:7242–7246. https://doi.org/10.1021/jm060712l

    Article  CAS  PubMed  Google Scholar 

  12. Cukierman DS, Accardo E, Gomes RG et al (2018) Aroylhydrazones constitute a promising class of ‘metal-protein attenuating compounds’ for the treatment of Alzheimer’s disease: a proof-of-concept based on the study of the interactions between zinc(II) and pyridine-2-carboxaldehyde isonicotinoyl hydrazone. J Biol Inorg Chem 23:1227–1241. https://doi.org/10.1007/s00775-018-1606-0

    Article  CAS  PubMed  Google Scholar 

  13. Çınarlı M, Yüksektepe Ataol Ç, Çınarlı E, İdil Ö (2020) Synthesis, characterization, biological, X-ray diffraction analysis and computational chemistry studies of new 2-acetylpyridine derivative hydrazone and its Zn(II) complex. J Mol Struct 1213:128–152. https://doi.org/10.1016/j.molstruc.2020.128152

    Article  CAS  Google Scholar 

  14. Abouzayed FI, Emam SM, Abouel-Enein SA (2020) Synthesis, characterization and biological activity of nano-sized Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of tetradentate hydrazone ligand. J Mol Struct 1216:128–314. https://doi.org/10.1016/j.molstruc.2020.128314

    Article  CAS  Google Scholar 

  15. Vojinović-Ješić LS, Bogdanović GA, Leovac VM et al (2008) Transition metal complexes with Girard reagent-based ligands. Part IV. Synthesis and characterization of pyridoxilidene Girard-T hydrazone complexes. Crystal structure of the copper(II) complex. Struct Chem 19:807–881. https://doi.org/10.1007/s11224-008-9368-x

    Article  CAS  Google Scholar 

  16. Vojinovic-Jesic L, Novakovic S, Leovac V, Cesljevic V (2012) Transition metal complexes with Girard reagents and their hydrazones. J Serb Chem Soc 77:1129–1155. https://doi.org/10.2298/JSC120704083V

    Article  CAS  Google Scholar 

  17. Milenković MR, Čobeljić B, Anđelković K, Turel I (2018) Molecular structures and spin-states of pseudohalide metal complexes with hydrazones of Girard’s T Reagent. Eur J Inorg Chem 2018:838–846. https://doi.org/10.1002/ejic.201701387

    Article  CAS  Google Scholar 

  18. Sedaghat T, Tarassoli A, Ansari-Asl Z, Motamedi H (2013) Water soluble organotin(IV) complexes with Girard-T reagent-based hydrazones: synthesis, spectral characterization, and antibacterial activity. J Coord Chem 66:2549–2557. https://doi.org/10.1080/00958972.2013.809424

    Article  CAS  Google Scholar 

  19. Yang N, Sun H (2007) Biocoordination chemistry of bismuth: recent advances. Coord Chem Rev 251:2354–2366. https://doi.org/10.1016/j.ccr.2007.03.003

    Article  CAS  Google Scholar 

  20. Yang Y, Ouyang R, Xu L et al (2015) Review: Bismuth complexes: synthesis and applications in biomedicine. J Coord Chem 68:379–397. https://doi.org/10.1080/00958972.2014.999672

    Article  CAS  Google Scholar 

  21. Kowalik M, Masternak J, Barszcz B (2019) Recent research trends on bismuth compounds in cancer chemoand radiotherapy. Curr Med Chem 26:729–759. https://doi.org/10.2174/0929867324666171003113540

    Article  CAS  PubMed  Google Scholar 

  22. Tiekink ERT (2002) Antimony and bismuth compounds in oncology. Crit Rev Oncol Hematol 42:217–224. https://doi.org/10.1016/S1040-8428(01)00217-7

    Article  PubMed  Google Scholar 

  23. Ferreira IP, Piló EDL, Recio-Despaigne AA et al (2016) Bismuth(III) complexes with 2-acetylpyridine- and 2-benzoylpyridine-derived hydrazones: antimicrobial and cytotoxic activities and effects on the clonogenic survival of human solid tumor cells. Bioorg Med Chem 24:2988–2998. https://doi.org/10.1016/j.bmc.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  24. Ferraz KSO, Silva NF, da Silva JG et al (2012) Investigation on the pharmacological profile of 2,6-diacetylpyridine bis(benzoylhydrazone) derivatives and their antimony(III) and bismuth(III) complexes. Eur J Med Chem 53:98–106. https://doi.org/10.1016/j.ejmech.2012.03.040

    Article  CAS  PubMed  Google Scholar 

  25. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313. https://doi.org/10.1023/A:1012976615056

    Article  CAS  PubMed  Google Scholar 

  26. Tian X, Hussain S, de Pace C et al (2019) ZnII complexes for bioimaging and correlated applications. Chem Asian J 14:509–526. https://doi.org/10.1002/asia.201900091

    Article  CAS  PubMed  Google Scholar 

  27. Dasgupta S, Karim S, Banerjee S et al (2020) Designing of novel Zinc(II) Schiff base complexes having acyl hydrazone linkage: study of phosphatase and anti-cancer activity. Dalton Trans 49:1232–1240. https://doi.org/10.1039/C9DT04636D

    Article  CAS  PubMed  Google Scholar 

  28. Crichton RR (2012) Biological inorganic chemistry, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  29. Qi G, Yang Z, Wang B (2007) Synthesis, characterization and DNA-binding properties of zinc(II) and nickel(II) Schiff base complexes. Transit Met Chem 32:233–239. https://doi.org/10.1007/s11243-006-0160-8

    Article  CAS  Google Scholar 

  30. Deo K, Pages B, Ang D et al (2016) Transition metal intercalators as anticancer agents—recent advances. Int J Mol Sci 17:1818–1835. https://doi.org/10.3390/ijms17111818

    Article  CAS  PubMed Central  Google Scholar 

  31. Brađan G, Pevec A, Turel I et al (2016) Synthesis, characterization, DFT calculations and antimicrobial activity of pentagonal-bipyramidal Zn(II) and Cd(II) complexes with 2,6-diacetylpyridine-bis(trimethylammoniumacetohydrazone). J Coord Chem 69:2754–2765. https://doi.org/10.1080/00958972.2016.1212339

    Article  CAS  Google Scholar 

  32. Romanović MČ, Čobeljić B, Pevec A et al (2017) Synthesis, characterization, DFT calculations and antimicrobial activity of Cd(II) complexes with the condensation product of 2-quinolinecarboxaldehyde and Girard’s T reagent. J Coord Chem 70:3702–3714. https://doi.org/10.1080/00958972.2017.1405262

    Article  CAS  Google Scholar 

  33. Anđelković K, Milenković MR, Pevec A et al (2017) Synthesis, characterization and crystal structures of two pentagonal-bipyramidal Fe(III) complexes with dihydrazone of 2,6-diacetylpyridine and Girard’s T reagent. Anticancer properties of various metal complexes of the same ligand. J Inorg Biochem 174:137–149. https://doi.org/10.1016/j.jinorgbio.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  34. Romanović MČ, Čobeljić B, Pevec A et al (2017) Synthesis, crystal structures and antimicrobial activity of azido and isocyanato Zn(II) complexes with the condensation product of 2-quinolinecarboxaldehyde and Girard’s T reagent. J Coord Chem 70:2425–2435. https://doi.org/10.1080/00958972.2017.1343945

    Article  CAS  Google Scholar 

  35. Čobeljić B, Pevec A, Stepanović S et al (2018) Structural diversity of isothiocyanato Cd(II) and Zn(II) Girard’s T hydrazone complexes in solution and solid state: effect of H-bonding on coordination number and supramolecular assembly of Cd(II) complex in solid state. Struct Chem 29:1797–1806. https://doi.org/10.1007/s11224-018-1155-8

    Article  CAS  Google Scholar 

  36. Adejumo TT, Tzouras NV, Zorba LP et al (2020) Synthesis, characterization, catalytic activity, and DFT calculations of Zn(II) hydrazone complexes. Molecules 25:4043–4060. https://doi.org/10.3390/molecules25184043

    Article  CAS  PubMed Central  Google Scholar 

  37. Cobeljic B, Pevec A, Jaglicic Z et al (2018) Synthesis, characterization and antimicrobial activity of isothiocyanato Fe(III) Girard’s t hydrazone complex. J Serb Chem Soc 83:1327–1337. https://doi.org/10.2298/JSC180828079C

    Article  CAS  Google Scholar 

  38. Čobeljić B, Turel I, Pevec A et al (2018) Synthesis, structures and magnetic properties of octahedral Co(III) complexes of heteroaromatic hydrazones with tetraisothiocyanato Co(II) anions. Polyhedron 155:425–432. https://doi.org/10.1016/j.poly.2018.08.070

    Article  CAS  Google Scholar 

  39. Keškić T, Čobeljić B, Gruden M et al (2019) what is the nature of interactions of BF4 −, NO3 −, and ClO4 − to Cu(II) complexes with Girard’s T hydrazine? When can binuclear complexes be formed? Cryst Growth Des 19:4810–4821. https://doi.org/10.1021/acs.cgd.9b00760

    Article  CAS  Google Scholar 

  40. Milenković MR, Papastavrou AT, Radanović D et al (2019) Highly-efficient N-arylation of imidazole catalyzed by Cu(II) complexes with quaternary ammonium-functionalized 2-acetylpyridine acylhydrazone. Polyhedron 165:22–30. https://doi.org/10.1016/j.poly.2019.03.001

    Article  CAS  Google Scholar 

  41. Keskic T, Radanovic D, Pevec A et al (2020) Synthesis, X-ray structure and DFT calculation of magnetic properties of binuclear Ni(II) complex with tridentate hydrazone-based ligand. J Serb Chem Soc 85:1279–1290. https://doi.org/10.2298/JSC200625038K

    Article  CAS  Google Scholar 

  42. Keškić T, Jagličić Z, Pevec A et al (2020) Synthesis, X-ray structures and magnetic properties of Ni(II) complexes of heteroaromatic hydrazone. Polyhedron 191:114802–114814. https://doi.org/10.1016/j.poly.2020.114802

    Article  CAS  Google Scholar 

  43. Afkhami FA, Khandar AA, Mahmoudi G et al (2016) Synthesis, X-ray characterization, DFT calculations and Hirshfeld surface analysis of Zn(II) and Cd(II) complexes based on isonicotinoylhydrazone ligand. CrystEngComm 18:4587–4596. https://doi.org/10.1039/C6CE00877A

    Article  CAS  Google Scholar 

  44. Afkhami FA, Mahmoudi G, Khandar AA et al (2019) Design and construction of Zn(II) coordination polymers made by pincer type pyridine-hydrazine based ligands. J Mol Struct 1197:555–563. https://doi.org/10.1016/j.molstruc.2019.07.090

    Article  CAS  Google Scholar 

  45. Scilabra P, Terraneo G, Resnati G (2019) The chalcogen bond in crystalline solids: a world parallel to halogen bond. Acc Chem Res 52:1313–1324. https://doi.org/10.1021/acs.accounts.9b00037

    Article  CAS  PubMed  Google Scholar 

  46. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  47. Starbuck J, Norman NC, Guy Orpen A (1999) Secondary bonding as a potential design element for crystal engineering. New J Chem 23:969–972. https://doi.org/10.1039/a906352h

    Article  Google Scholar 

  48. Kyriakidis CE, Christidis PC, Rentzeperis PJ et al (1990) Crystal structure and spectra of Trichloro-p-chlorobenzoyl-2-furaldehydohydrazono bismuth(III). Z Kristallogr 193:101–110. https://doi.org/10.1524/zkri.1990.193.1-2.101

    Article  CAS  Google Scholar 

  49. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM (2019) Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med 9:84–105. https://doi.org/10.3390/jcm9010084

    Article  CAS  PubMed Central  Google Scholar 

  50. Szekely J, Gates KS (2006) Noncovalent DNA binding and the mechanism of oxidative DNA damage by fecapentaene-12. Chem Res Toxicol 19:117–121. https://doi.org/10.1021/tx050197e

    Article  CAS  PubMed  Google Scholar 

  51. Li X-L, Hu Y-J, Wang H et al (2012) Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromol 13:873–880. https://doi.org/10.1021/bm2017959

    Article  CAS  Google Scholar 

  52. Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair BU (2000) DNA cleavage by a chromium(III) complex. Biochem Biophys Res Commun 271:731–734. https://doi.org/10.1006/bbrc.2000.2707

    Article  CAS  PubMed  Google Scholar 

  53. Kakkar R, Garg R, Suruchi A (2002) Towards understanding the molecular recognition process in Hoechst–DNA complexes. J Mol Struct (Thoechem) 584:37–44. https://www.scopus.com/authid/detail.uri?authorId=7409949663

    Article  CAS  Google Scholar 

  54. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170. https://doi.org/10.1021/bi00745a020

    Article  CAS  PubMed  Google Scholar 

  55. Sheldrick GM (2015) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  56. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  57. Dolomanov OV, Bourhis LJ, Gildea RJ et al (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  58. Sartoratto A, Machado ALM, Delarmelina C et al (2004) Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol 35:275–280. https://doi.org/10.1590/S1517-83822004000300001

    Article  CAS  Google Scholar 

  59. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  60. Ohno M, Abe T (1991) Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Methods 145:199–203. https://doi.org/10.1016/0022-1759(91)90327-C

    Article  CAS  PubMed  Google Scholar 

  61. Matić IZ, Aljančić I, Žižak Ž et al (2013) In vitro antitumor actions of extracts from endemic plant Helichrysum zivojinii. BMC Complement Altern Med 13:36–48. https://doi.org/10.1186/1472-6882-13-36

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ormerod MG (2000) Flow cytometry. A practical approach, 3rd edn. Oxford University Press

    Google Scholar 

  63. Mihailović N, Marković V, Matić IZ et al (2017) Synthesis and antioxidant activity of 1,3,4-oxadiazoles and their diacylhydrazine precursors derived from phenolic acids. RSC Adv 7:8550–8560. https://doi.org/10.1039/C6RA28787E

    Article  Google Scholar 

  64. Aranda E, Owen GI (2009) A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res 42:377–389. https://doi.org/10.4067/S0716-97602009000300012

    Article  PubMed  Google Scholar 

  65. Matić IZ, Aljančić I, Vajs V et al (2013) Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: effects on cell migration, invasion and angiogenesis. Nat Prod Commun 8:1291–1296

    PubMed  Google Scholar 

  66. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) a further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053. https://doi.org/10.1021/ja01640a067

    Article  CAS  Google Scholar 

  67. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145. https://doi.org/10.1093/nar/16.13.6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia for the financial support (Grant numbers: 451-03-9/2021-14/20004, 451-03-68/2021-14/200026 and 451-03-9/2021-14/200168). The Laboratorio di Strutturistica “M. Nardelli” of the University of Parma and Chiesi Farmaceutici SpA are thanked for the X-ray diffraction data collection. This work has benefited from the equipment and framework of the COMP-HUB Initiative, funded by the “Departments of Excellence” program of the Italian Ministry for Education, University and Research (MIUR, 2018-2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Anđelković.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevanović, N., Mazzeo, P.P., Bacchi, A. et al. Synthesis, characterization, antimicrobial and cytotoxic activity and DNA-binding properties of d-metal complexes with hydrazones of Girard’s T and P reagents. J Biol Inorg Chem 26, 863–880 (2021). https://doi.org/10.1007/s00775-021-01893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01893-5

Keywords

Navigation