Skip to main content
Log in

Biological Impacts of Metal(II) Complex–Based DNA Probes Derived from Bidentate N,O Donor Schiff Base Ligand

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this article, we have reported the preparation and structural characterization of a new Schiff base ligand (E)-2-(((2,6-difluorophenyl)imino)methyl)phenol (HSBL) and its derived metal(II) complexes [Cu(SBL)2] (1), [Ni(SBL)2] (2) and [Pd(SBL)2] (3). Using various analytical and spectroscopic techniques, their structural properties have been appraised. The proposed chemical structure of HSBL has been confirmed by Single crystal XRD studies. Bidentate characteristic of HSBL and its coordination with metal(II) ions through the oxygen atom of the phenolic group and nitrogen atom of the azomethine group have been evaluated from the FT-IR spectral analysis. Pd(II) complex of HSBL (complex 3) has found to be efficient in bringing about the interaction with DNA as well as BSA molecules. The in vitro antimicrobial studies have been demonstrated that complex 3 has a superior antimicrobial activity than HSBL, complexes 1 and 2. According to the values of zone of inhibition, the antimicrobial ability has been increased in the order of 3 > 1 > 2 > HSBL. A significant decrease in percent cell viability has been suggested that complex 3 has remarkable cytotoxicity (IC50 = 15.7 ± 0.6 μg/mL) on human breast cancer (MCF-7) cells. Besides, their induced apoptosis pathway of cytotoxicity has been demonstrated by fluorescence staining techniques using AO/EB staining method. We hope this article will be very helpful for future research on the development of new anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mishra, P., & Soni, M. (2008). Synthesis, structural, and biological studies of some Schiff bases and their metal complexes. Metal-Based Drugs, 2008, 1–7.

    Article  Google Scholar 

  2. Aziz, A. A. (2011). Mononuclear Ru(II) carbonyl complexes containing quadridentate Schiff bases as N2O2Donors: synthesis, spectral, catalytic properties, and antibacterial activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41(4), 384–393.

    Article  CAS  Google Scholar 

  3. Nagesh, N., Raju, G., Srinivas, R., Ramesh, P., Reddy, M. D., & Reddy, C. R. (2015). A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(1), 129–140.

    Article  CAS  Google Scholar 

  4. Raju, G., Srinivas, R., Reddy, M. D., Reddy, C. R., & Nagesh, N. (2014). Studies on non-covalent interaction of Coumarin attached pyrimidine and 1-methyl indole 1,2,3 triazole analogues with intermolecular telomeric G-Quadruplex DNA using ESI-MS and spectroscopy. Nucleosides, Nucleotides and Nucleic Acids, 33(7), 489–506.

    Article  CAS  Google Scholar 

  5. Xu, Q., Kulkarni, A. A., Sajith, A. M., Hussein, D., Brown, D., Güner, O. F., Reddy, M. D., Watkins, E. B., Lassègue, B., Griendling, K. K., & Bowen, J. P. (2018). Design, synthesis, and biological evaluation of inhibitors of the NADPH oxidase, Nox4. Bioorganic & Medicinal Chemistry, 26(5), 989–998.

    Article  CAS  Google Scholar 

  6. Dholakiya, P. P., & Patel, M. N. (2004). Metal complexes: preparation, magnetic, spectral, and biocidal studies of some mixed-ligand complexes with Schiff bases containing NO and NN donor atoms. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 34(3), 553–563.

    Article  CAS  Google Scholar 

  7. Shoaib, K. (2013). Synthesis, characterization and biological applications of transition metal complexes of [NO] donor Schiff bases. Journal of Proteomics & Bioinformatics, 06(07).

  8. Raja, G., Butcher, R. J., & Jayabalakrishnan, C. (2011). Synthesis, characterization, DNA binding and cleavage properties and anticancer studies of ruthenium(III) Schiff base complexes. Transition Metal Chemistry, 37(2), 169–174.

    Article  Google Scholar 

  9. Mendu, P., Kumari, C. G., & Ragi, R. (2015). Synthesis, characterization, DNA binding, DNA cleavage and antimicrobial studies of Schiff Base ligand and its metal complexes. Journal of Fluorescence, 25(2), 369–378.

    Article  CAS  Google Scholar 

  10. Jayaseelan, P., Prasad, S., Vedanayaki, S., & Rajavel, R. (2016). Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes. Arabian Journal of Chemistry, 9, S668–S677.

    Article  CAS  Google Scholar 

  11. Shahabadi, N., Kashanian, S., & Darabi, F. (2010). DNA binding and DNA cleavage studies of a water soluble cobalt(II) complex containing dinitrogen Schiff base ligand: The effect of metal on the mode of binding. European Journal of Medicinal Chemistry, 45(9), 4239–4245.

    Article  CAS  Google Scholar 

  12. Rocha, F. V., Barra, C. V., Netto, A. V. G., Mauro, A. E., Carlos, I. Z., Frem, R. C. G., Ananias, S. R., Quilles, M. B., Stevanato, A., & da Rocha, M. C. (2010). 3,5-Dimethyl-1-thiocarbamoylpyrazole and its Pd(II) complexes: synthesis, spectral studies and antitumor activity. European Journal of Medicinal Chemistry, 45(5), 1698–1702.

    Article  CAS  Google Scholar 

  13. Barra, V., Rocha, F. V., Gautier, A., Morel, L., Quilles, M. B., Carlos, I. Z., Treu-Filho, O., Frem, R. C. G., Mauro, A. E., & Netto, A. V. G. (2013). Synthesis, cytotoxic activity and DNA interaction of Pd(II) complexes bearing N′-methyl-3,5-dimethyl-1-thiocarbamoylpyrazole. Polyhedron, 65, 214–220.

    Article  CAS  Google Scholar 

  14. Rocha, F. V., Barra, C. V., Mauro, A. E., Carlos, I. Z., Nauton, L., El Ghozzi, M., Gautier, A., Morel, L., & Netto, A. V. G. (2013). Synthesis, characterization, X-ray structure, DNA cleavage, and cytotoxic activities of palladium(II) complexes of 4-phenyl-3-thiosemicarbazide and triphenylphosphane. European Journal of Inorganic Chemistry, 2013(25), 4499–4505.

    Article  CAS  Google Scholar 

  15. Ulukaya, E., Ari, F., Dimas, K., Ikitimur, E. I., Guney, E., & Yilmaz, V. T. (2011). Anti-cancer activity of a novel palladium(II) complex on human breast cancer cells in vitro and in vivo. European Journal of Medicinal Chemistry, 46(10), 4957–4963.

    Article  CAS  Google Scholar 

  16. Rau, T., & Van Eldik, R. (1996). In A. Sigel & H. Sigel (Eds.), Metal ions in biological systems (Vol. 31, pp. 339–378). New York: Marcel Dekker.

    Google Scholar 

  17. Mansour, A. M. (\ 2017). Structural studies and biological activity evaluation of Pd(II), Pt(II) and Ru(II) complexes containing N-phenyl,N′-(3-triazolyl)thiourea. Applied Organometallic Chemistry, 32(1), e3928.

    Article  Google Scholar 

  18. Zhang, S., Pattacini, R., & Braunstein, P. (2011). Chelating or bridging Pd(ii) and Pt(ii) metalloligands from the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine. New heterometallicPd(ii)/Pt(ii) and Pt(ii)/Au(i) complexes. Dalton Transactions, 40(21), 5711.

    Article  CAS  Google Scholar 

  19. Sheldrick, G. M. (1999). SHELXL-97. Gottingen: University of Gottingen.

    Google Scholar 

  20. SMART & SAINT Software Reference Manuals, v. 5.0, Bruker AXS Inc., Madison, WI 1998; G. M. Sheldrick, SADABS, Program for area detector adsorption correction, InstInorgChem, University of Gottingen, Germany 1996.

  21. SHELXTL Reference manual, v. 5.1, Bruker AXS Inc., Madison 1998.

  22. Case, D. A., et al. (2008). AMBER 10. San Francisco: University of California.

    Google Scholar 

  23. Shui, X., McFail-Isom, L., Hu, G. G., & Williams, L. D. (1998). The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry, 37(23), 8341–8355.

    Article  CAS  Google Scholar 

  24. Trott, O., & Olson, A. J. (2010). AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Computers & Chemistry, 31, 455–461.

    CAS  Google Scholar 

  25. DeLano, W. L. (2008). The PyMOL molecular graphics system. Palo Alto: DeLano Scientific LLC.

    Google Scholar 

  26. de Groot Seeliger, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24, 417–422.

    Article  CAS  Google Scholar 

  27. Chang, M. W., Ayeni, C., Breuer, S., & Torbett, B. E. (2010). Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS One, 5–8.

  28. Mathan Kumar, S., Kesavan, M. P., Vinoth Kumar, G. G., Sankarganesh, M., Chakkaravarthi, G., Rajagopal, G., & Rajesh, J. (2018). New heterolepticZn(II) complexes of thiosemicarbazone and diimine co-ligands: Structural analysis and their biological impacts. Journal of Molecular Structure, 1153, 1–11.

    Article  CAS  Google Scholar 

  29. Kesavan, M. P., Vinoth Kumar, G. G., Dhaveethu Raja, J., Anitha, K., Karthikeyan, S., & Rajesh, J. (2017). DNA interaction, antimicrobial, antioxidant and anticancer studies on Cu(II) complexes of Luotonin A. Journal of Photochemistry and Photobiology B: Biology, 167, 20–28.

    Article  CAS  Google Scholar 

  30. Dhahagani, K., Kesavan, M. P., Vinoth Kumar, G. G., Ravi, L., Rajagopal, G., & Rajesh, J. (2018). Crystal structure, optical properties, DFT analysis of new morpholine based Schiff base ligands and their copper(II) complexes: DNA, protein docking analyses, antibacterial study and anticancer evaluation. Materials Science and Engineering: C, 90, 119–130.

    Article  CAS  Google Scholar 

  31. Arun, T., & Raman, N. (2014). Antimicrobial efficacy of phenanthrenequinone based Schiff base complexes incorporating methionine amino acid: Structural elucidation and in vitro bio assay. Spectrochimica Acta A, 127, 292–302.

    Article  CAS  Google Scholar 

  32. Kasumov, V. T., Medjidov, A. A., Rzaev, R. Z., & Golubeva, I. A. (1993). Synthesis, structure, and redox properties of a new bis [N-(3, 5-di-tert-butyl-4-hydroxyphenyl)-2,4-di-tert-butylsalicylaldiminato] copper(II) and its free-radical complexes. Russian Journal of Coordination Chemistry, 19, 877–877.

    Google Scholar 

  33. Sacconi, L., Ciampolini, M., Maggio, F., & Cavasino, F. P. (1962). Studies in coordination chemistry. IX. 1 Investigation of the stereochemistry of some complex compounds of cobalt(II) with N-substituted salicylaldimines. Journal of the American Chemical Society, 84, 3246–3248.

    Article  CAS  Google Scholar 

  34. Drago, R. S. (1991). Physical methods in inorganic chemistry. New Delhi: Affiliated East West.

    Google Scholar 

  35. Massoud, S. S., Perkins, R. S., Louka, F. R., Xu, W., Roux, A. L., Dutercq, Q., Fischer, R. C., Mautner, F. A., Handa, M., Hiraoka, Y., Kreft, G. L., Bortolotto, T., & Terenzi, H. (2014). Efficient hydrolytic cleavage of plasmid DNA by chloro-cobalt(II) complexes based on sterically hindered pyridyl tripod tetraamine ligands: synthesis, crystal structure and DNA cleavage. Dalton Transactions, 43(26), 10086–10103.

    Article  CAS  Google Scholar 

  36. Qin, J., Shen, W., Chen, Z., Zhao, L., Qin, Q., Yu, Y., & Liang, H. (2017). Oxoaporphine metal complexes (CoII, NiII, ZnII) with high antitumor activity by inducing mitochondria-mediated apoptosis and S-phase arrest in HepG2. Scientific Reports, 7(1), 46056.

    Article  Google Scholar 

  37. Usman, M., Arjmand, F., Khan, R. A., Alsalme, A., Ahmad, M., & Tabassum, S. (2017). Biological evaluation of dinuclear copper complex/dichloroacetic acid cocrystal against human breast cancer: design, synthesis, characterization, DFT studies and cytotoxicity assays. RSC Advances, 7(76), 47920–47932.

    Article  CAS  Google Scholar 

  38. Kesavan, M. P., Niranjan, G., Kotla, G., Ayyanaar, S., Vinoth Kumar, G. G., Rajagopal, G., Sivaraman, G., Webster, T. J., & Rajesh, J. (2018). A theranosticnanocomposite system based on iron oxide-drug nanocages for targeted magnetic field responsive chemotherapy. Nanomedicine: NBM, 14(5), 1643–1654.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors honestly acknowledge to the management of Chikkanna Government Arts College and Mohamed Sathak Engineering College for their lab and instrumental facilities.

Funding

This work was supported by the DST-SERB (Grant No.: SB/FT/CS-130/2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jegathalaprathaban Rajesh or Gurusamy Rajagopal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amali, I.B., Kesavan, M.P., Vijayakumar, V. et al. Biological Impacts of Metal(II) Complex–Based DNA Probes Derived from Bidentate N,O Donor Schiff Base Ligand. Appl Biochem Biotechnol 190, 373–390 (2020). https://doi.org/10.1007/s12010-019-03110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03110-1

Keywords

Navigation