Skip to main content
Log in

Transition metal complexes with Girard reagent-based ligands. Part IV. Synthesis and characterization of pyridoxilidene Girard-T hydrazone complexes. Crystal structure of the copper(II) complex

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The monoligand complexes of the formula M(HPLGT)(NCS)2 (M = Cu(II), Zn(II)) in which the ligand tridentate ONO pyridoxilidene Girard-T hydrazone, [H3PLGT]Cl2 · 2H2O, was coordinated in neutral doubly deprotonated form were synthesized. Also, the first complexes with the ligand coordinated in triply deprotonated monoanionic form of the formula [Cu(PLGT)N3] and [Co(PLGT)(NO2)2NH3] · 3H2O are reported. The single crystal X-ray analysis of [Cu(HPLGT)(NCS)2] showed that Cu(II) is placed in a square-pyramidal surrounding consisting of one tridentate Schiff base and one NCS group in the basal plane and the other NCS group in the apical position. Intermolecular hydrogen bonds leading to centrosymmetrical dimerization of these complexes were discussed. In the reaction of Girard-T and Hacac in the presence of CuCl2, a mixture of single crystal complexes of the composition [Cu(3,5-Me2pz)2Cl2]2 and [Cu(acac)2] · 2[Cu(3,5-Me2pz)2Cl2] was obtained and X-ray analysis of the latter one was reported.

Index abstract

Crystal structure of the Cu(II) complex with pyridoxilidene Girard-T hydrazone was analyzed. Additional two Cu(II) complexes obtained by the reaction of Girard-T reagent and Hacac in the presence of CuCl2 were also studied by single crystal X-ray analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Girard A, Sandulesco G (1936) Helv Chim Acta 19:109. doi:10.1002/hlca.193601901148

    Article  Google Scholar 

  2. Viscontini M, Meier J (1950) Helv Chim Acta 33:1773. doi:10.1002/hlca.19500330646

    Article  CAS  Google Scholar 

  3. Wheeler OH (1962) Chem Rev 62:205. doi:10.1021/cr60217a002

    Article  CAS  Google Scholar 

  4. Masui M, Ohmori H (1964) Chem Pharm Bull (Tokyo) 12:877

    CAS  Google Scholar 

  5. Masui M, Ohmori H (1967) J Chem Soc B:762. doi:10.1039/j29670000762

  6. Wheeler OH (1968) J Chem Educ 45:435

    Article  CAS  Google Scholar 

  7. Mostafa MM, Hassan SM, Ibrahim GM (1980) J Inorg Nucl Chem 42:285. doi:10.1016/0022-1902(80)80259-4

    Article  CAS  Google Scholar 

  8. Emam MEM, Hafez MA, Moussa MNH (1991) J Therm Anal 37:1005. doi:10.1007/BF01932798

    Article  Google Scholar 

  9. Wang X, Zhang XM, Liu HX (1994) J Coord Chem 33:223. doi:10.1080/00958979408024280

    Article  CAS  Google Scholar 

  10. Wang X, Zhang XM, Liu HX (1994) Inorg Chim Acta 223:193. doi:10.1016/0020-1693(94)04007-9

    Article  CAS  Google Scholar 

  11. Vojinović LS, Leovac VM, Novaković SB, Bogdanović GA, Csanádi JJ, Češljević VI (2004) Inorg Chem Commun 7:1264. doi:10.1016/j.inoche.2004.09.016

    Article  CAS  Google Scholar 

  12. Leovac VM, Mészáros-Szécsényi K, Vojinović-Ješić LS, Češljević VI, Markov S, Wadsten T (2006) J Therm Anal Calorim 86:379. doi:10.1007/s10973-005-7402-4

    Article  CAS  Google Scholar 

  13. Leovac VM, Bogdanović GA, Češljević VI, Jovanović LS, Novaković SB, Vojinović-Ješić LS (2007) Struct Chem 18:113. doi:10.1007/s11224-006-9136-8

    Article  CAS  Google Scholar 

  14. Mostafa MM, Khattab MA, Ibrahim KM (1983) Transit Metal Chem 8:212. doi:10.1007/BF00620692

    Article  CAS  Google Scholar 

  15. El-Bahnasawy RM (1995) J Therm Anal 45:1547. doi:10.1007/BF02547448

    Article  CAS  Google Scholar 

  16. Abou Sekkina MM, Salem MR (1997) J Thermal Anal 48:841 and references therein

    Article  Google Scholar 

  17. Enraf-Nonius CAD-4 Software (1989) Version 5.0, Enraf-Nonius. Delft, The Netherlands

    Google Scholar 

  18. CAD-4 Express Software (1994) Enraf-Nonius. Delft, The Netherlands

    Google Scholar 

  19. (a) Sheldrick GM (1997) SHELXS97. Program for the solution of crystal structures. University of Göttingen, Germany; (b) Sheldrick GM (1997) SHELXL97. Program for the refinement of crystal structures. University of Göttingen, Germany

  20. (a) Spek AL (1990) Acta Crystallogr A 46:C34; (b) Spek AL (1998) PLATON: Multipurpose crystallographic tool. Utrecht University, Utrecht, The Netherlands

  21. Farrugia LJ (1999) J Appl Cryst 32:837. doi:10.1107/S0021889899006020

    Article  CAS  Google Scholar 

  22. Nardelli M (1995) J Appl Cryst 28:659. doi:10.1107/S0021889895007138

    Article  CAS  Google Scholar 

  23. Farrugia LJ (1997) J Appl Cryst 30:565. doi:10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  24. Neyding AB (1970) Magnetokhimiya kompleksnykh soedinenii perekhodnykh metallov. Itogi Nauki, Moskva

    Google Scholar 

  25. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds. Wiley–Interscience, New York

    Google Scholar 

  26. Geary WJ (1971) Coord Chem Rev 7:81. doi:10.1016/S0010-8545(00)80009-0

    Article  CAS  Google Scholar 

  27. Bindu P, Pratapachandra Kurup MR (1997) Transit Metal Chem 22:578. doi:10.1023/A:1018512708055

    Article  CAS  Google Scholar 

  28. El-Sawaf AK, West DX, El-Saied FA, El-Bahnasawy RM (1997) Transit Metal Chem 22:360. doi:10.1023/A:1018598302178

    Article  CAS  Google Scholar 

  29. Sevilla JM, Cambron G, Pineda T, Blázquez M (1995) J Electroanal Chem 381:179. doi:10.1016/0022-0728(94)03695-Y

    Article  Google Scholar 

  30. Lever ABP (1987) Inorganic electronic spectroscopy (Russian translation). Mir, Moskva, p 2

  31. Leovac VM, Jovanović LS, Jevtović VS, Pelosi G, Bisceglie F (2007) Polyhedron 26:2971. doi:10.1016/j.poly.2007.01.041

    Article  CAS  Google Scholar 

  32. Nishio M, Hirota M, Umezawa Y (1998) The CH/π Interaction evidence nature and consequences. John Wiley & Sons Inc., New York

    Google Scholar 

  33. Desiraju GR, Steiner T (1999) The weak hydrogen bonds in structural chemistry and biology, Oxford University Press

  34. Bogdanović GA, Spasojević-de Biré A, Zarić SD (2002) Eur J Inorg Chem 1599. doi :10.1002/1099-0682(200207)2002:7<1599::AID-EJIC1599>3.0.CO;2-I

  35. Starikova ZA, Shugam EA (1969) Zh Strukt Khim Russ 10:290

    CAS  Google Scholar 

  36. Chandrasekhar V, Kingsley S, Vij A, Lam KC KC, Rheingold AL (2000) Inorg Chem 39:3238. doi:10.1021/ic991255k

    Article  CAS  Google Scholar 

  37. Vogel AI, Tatchell AR, Furnis BS, Hannaford AJ, Smith PWG (1989) Vogel’s textbook of practical organic chemistry, 5th edn. Longman, London

  38. Mészáros-Szécsényi K, Leovac VM, Jaćimović ŽK, Češljević VI, Kovács A, Pokol G (2001) J Therm Anal Calorim 66:573. doi:10.1023/A:1013133405261

    Article  Google Scholar 

  39. Mészáros-Szécsényi K, Leovac VM, Češljević VI, Kovács A, Pokol G, Gy Argay, Kálmán A, Bogdanović GA, Jaćimović ŽK, Spasojević-de Biré A (2003) Inorg Chim Acta 353:253. doi:10.1016/S0020-1693(03)00231-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Environmental Protection of the Republic of Serbia (Grant No. 142028) and the Provincial Secretariat for Science and Technological Development of Vojvodina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran A. Bogdanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vojinović-Ješić, L.S., Bogdanović, G.A., Leovac, V.M. et al. Transition metal complexes with Girard reagent-based ligands. Part IV. Synthesis and characterization of pyridoxilidene Girard-T hydrazone complexes. Crystal structure of the copper(II) complex. Struct Chem 19, 807–815 (2008). https://doi.org/10.1007/s11224-008-9368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9368-x

Keywords

Navigation