Skip to main content
Log in

Zinc-buffering capacity of a eukaryotic cell at physiological pZn

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In spite of the paramount importance of zinc in biology, dynamic aspects of cellular zinc metabolism remain poorly defined at the molecular level. Investigations with human colon cancer (HT-29) cells establish a total cellular zinc concentration of 264 μM. Remarkably, about 10% of the potential high-affinity zinc-binding sites are not occupied by zinc, resulting in a surplus of 28 μM ligands (average K cd  = 83 pM) that ascertain cellular zinc-buffering capacity and maintain the “free” zinc concentration in proliferating cells at picomolar levels (784 pM, pZn = 9.1). This zinc-buffering capacity allows zinc to fluctuate only with relatively small amplitudes (ΔpZn = 0.3; below 1 nM) without significantly perturbing physiological pZn. Thus, the “free” zinc concentrations in resting and differentiated HT-29 cells are 614 pM and 1.25 nM, respectively. The calculation of these “free” zinc concentrations is based on measurements at different concentrations of the fluorogenic zinc-chelating agent and extrapolation to a zero concentration of the agent. It depends on the state of the cell, its buffering capacity, and the zinc dissociation constant of the chelating agent. Zinc induction of thionein (apometallothionein) ensures a surplus of unbound ligands, increases zinc-buffering capacity and the availability of zinc (ΔpZn = 0.8), but preserves the zinc-buffering capacity of the unoccupied high-affinity zinc-binding sites, perhaps for crucial physiological functions. Jointly, metallothionein and thionein function as the major zinc buffer under conditions of increased cellular zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

Notes

  1. “Free” zinc has been referred to as “freely available,” “labile,” or “rapidly exchangeable” zinc that is readily bound to chelating agents. Each term is an operational definition and has its limitations. For the lack of a better term, “free” zinc is used in this work, albeit with the understanding that the chemical nature of the ligands of ionic zinc is not known. “Rapidly exchangeable” implies certain kinetic mechanisms. Thus, there are pools of thermodynamically tightly bound zinc with considerable “kinetic lability” in exchange reactions. A prime example is metallothionein.

References

  1. O’Halloran TV, Culotta VC (2000) J Biol Chem 275:25057–25060

    PubMed  Google Scholar 

  2. Thompson RB (2005) Curr Opin Chem Biol 9:526–532

    CAS  PubMed  Google Scholar 

  3. Gaither LA, Eide DJ (2001) Biometals 14:251–270

    CAS  PubMed  Google Scholar 

  4. Outten CE, O’Halloran TV (2001) Science 292:2488–2492

    CAS  PubMed  Google Scholar 

  5. Peck EJ Jr, Ray WJ Jr (1971) J Biol Chem 246:1160–1167

    PubMed  Google Scholar 

  6. Simons TJB (1991) J Membr Biol 123:63–71

    CAS  PubMed  Google Scholar 

  7. Benters J, Flögel U, Schäfer T, Leibfritz D, Hechtenberg S, Beyersmann D (1997) Biochem J 322:793–799

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Adebodun F, Post JF (1995) J Cell Physiol 163:80–86

    CAS  PubMed  Google Scholar 

  9. Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) J Biol Chem 270:2473–2477

    CAS  PubMed  Google Scholar 

  10. Ayaz M, Turan B (2006) Am J Physiol Heart Circ Physiol 290:H1071–H1080

    CAS  PubMed  Google Scholar 

  11. Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) ACS Chem Biol 1:103–111

    CAS  PubMed  Google Scholar 

  12. Frederickson CJ, Bush AI (2001) Biometals 14:353–366

    CAS  PubMed  Google Scholar 

  13. Frederickson CJ, Koh J-Y, Bush AI (2005) Nat Rev Neurosci 6:449–462

    CAS  PubMed  Google Scholar 

  14. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  15. Hitomi Y, Outten CE, O’Halloran TV (2001) J Am Chem Soc 123:8614–8615

    CAS  PubMed  Google Scholar 

  16. Hirano T, Kikuchi K, Urano Y, Nagano T (2002) J Am Chem Soc 124:6555–6562

    CAS  PubMed  Google Scholar 

  17. Shaw CF, Laib JE, Savas M, Petering DH (1990) Inorg Chem 29:403–408

    CAS  Google Scholar 

  18. Smith PK, Krohn RJ, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, Fujimoto EK, Goeke NM, Olson GJ, Klenk DC (1985) Anal Biochem 150:76–85

    CAS  PubMed  Google Scholar 

  19. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E (2003) Anal Biochem 312:224–227

    CAS  PubMed  Google Scholar 

  20. Yang Y, Maret W, Vallee BL (2001) Proc Natl Acad Sci USA 98:5556–5559

    CAS  PubMed  Google Scholar 

  21. Raaflaub J (1956) Methods Biochem Anal 3:301–325

    CAS  PubMed  Google Scholar 

  22. Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TG, Jones DP (1999) Free Radical Biol Med 27:1208–1218

    CAS  Google Scholar 

  23. Nagel WW, Vallee BL (1995) Proc Natl Acad Sci USA 92:579–583

    CAS  PubMed  Google Scholar 

  24. Neutra M, Louvard D (1989) In: Matlin KS, Valentich JD (eds) Functional epithelial cells in culture. Liss, New York, pp 363–398

  25. Gee KR, Zhou Z-L, Qian W-E, Kennedy R (2002) J Am Chem Soc 124:776–778

    CAS  PubMed  Google Scholar 

  26. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Proc Natl Acad Sci USA 100:6157–6162

    CAS  PubMed  Google Scholar 

  27. Kimura E, Shiota T, Koike T, Shiro M, Kodoma M (1990) J Am Chem Soc 112:5805–5811

    CAS  Google Scholar 

  28. Schwarzenbach G, Freitag E (1951) Helv Chim Acta 34:1492–1502

    CAS  Google Scholar 

  29. Chaberek S, Martell AE (1952) J Am Chem Soc 74:6228–6231

    CAS  Google Scholar 

  30. Frausto da Silva JJR, Calado JG (1963) Rev Port Quim 5:121–128

    Google Scholar 

  31. Martell AE, Smith RM (2001) NIST critical stability constants of metal complexes. NIST standard reference database 46, version 6.0

  32. Anderegg G (1964) Helv Chim Acta 47:1801–1814

    CAS  Google Scholar 

  33. Holloway JH, Reilley CN (1960) Anal Chem 32:249–256

    CAS  Google Scholar 

  34. Gee KR, Zhou ZL, Ton-That D, Sensi SL, Weiss JH (2002) Cell Calcium 31:245–251

    CAS  PubMed  Google Scholar 

  35. Kägi JHR (1993) In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Biological roles and medical implications. Birkhäuser, Basel, pp 29–55

  36. Krężel A, Wójcik J, Maciejczyk M, Bal W (2003) Chem Commun 704–705

  37. Rabenstein DL, Isab AA (1980) FEBS Lett 121:61–64

    CAS  PubMed  Google Scholar 

  38. Günes C, Heuchel R, Georgiev O, Müller KH, Lichtlen P, Blüthmann H, Marino S, Aguzzi A, Schaffner W (1998) EMBO J 17:2846–2854

    PubMed  PubMed Central  Google Scholar 

  39. Krężel A, Bal W (1999) Acta Biochim Pol 46:567–580

    PubMed  Google Scholar 

  40. Krężel A, Bal W (2004) Bioinorg Chem Appl 2:293–305

    PubMed Central  Google Scholar 

  41. Chang CJ, Nolan EM, Jaworski J, Burdette SC, Sheng M, Lippard SJ (2004) Chem Biol 11:203–210

    CAS  PubMed  Google Scholar 

  42. Kikuchi K, Komatsu K, Nagano T (2004) Curr Opin Chem Biol 8:182–191

    CAS  PubMed  Google Scholar 

  43. Dineley KE, Malaiyandi LM, Reynolds IJ (2002) Mol Pharmacol 62:618–627

    CAS  PubMed  Google Scholar 

  44. Haase H, Hebel S, Engelhardt G, Rink L (2006) Anal Biochem 352:222–230

    CAS  PubMed  Google Scholar 

  45. Maret W, Jacob C, Vallee BL, Fischer EH (1999) Proc Natl Acad Sci USA 96:1936–1940

    CAS  PubMed  Google Scholar 

  46. Knipp M, Charnock JM, Garner CD, Vasak M (2001) J Biol Chem 276:40449–40456

    CAS  PubMed  Google Scholar 

  47. Haase H, Maret W (2003) Exp Cell Res 291:289–298

    CAS  PubMed  Google Scholar 

  48. Heinz U, Kiefer M, Tholey A, Adolph H-W (2005) J Biol Chem 280:3197–3207

    CAS  PubMed  Google Scholar 

  49. Thomas RC, Coles JA, Deitmer JW (1991) Nature 350:564

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant GM 065388 to WM. We thank Dr. V.M. Sadagopa Ramanujam, Associate Professor, Department for Preventive Medicine and Community Health, The University of Texas Medical Branch, for metal analyses by atomic absorption spectrophotometry (supported by the Human Nutrition Research Facility) and Drs. Christopher J. Frederickson and Hans-Werner Adolph for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Maret.

Appendices

Appendix 1

Variation of “free” zinc in the presence of two ligands, where L1 represents the bulk of cellular zinc proteins and L2 represents the fluorescent probe. The simulations demonstrate that under zinc-buffering conditions extrapolation with a linear function (Fig. 2) is permissible. The concentrations of total zinc and probe correspond to those experimentally determined. The buffered system (Fig. 7, panel A) corresponds to the experimental condition of an excess of unbound ligands (292 μM, corresponding to the sum of 264 μM occupied and 28 μM surplus ligands), whereas the unbuffered (264 μM) system (Fig. 7, panel B) corresponds to a fictional condition without additional zinc-buffering capacity. Intermediate conditions with L1 values of 270, 275, 280, 285, 290, and 295 μM are represented in Fig. 7, panel C, curves a–e, respectively.

Fig. 7
figure 7

Relation between the concentration of FluoZin-3 and “free” zinc in a buffered (a) and an unbuffered (b) system, and in systems with different buffering capacity (c)

Appendix 2

Simulation of the Zincon–zinc titration (Fig. 8) in the presence of intracellular unbound ligands with various affinities for zinc and experimentally determined parameters (Fig. 4).

Fig. 8
figure 8

Zincon–Zn titration as a function of cellular ligands with different dissociation constants: 83 pM (squares), 3.2 nM (triangles), and 10 nM (circles). The dissociation constant (pKd = 4.9) of the Zn-Zincon complex at pH 7.4 and ε620 = 23,200 M−1 cm−1 were from  [17]. Zincon concentration 200 μM; total cellular ligands 24.53 μM; total zinc 22.18 μM; zinc added 0–6.38 μM

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krężel, A., Maret, W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11, 1049–1062 (2006). https://doi.org/10.1007/s00775-006-0150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0150-5

Keywords

Navigation