Skip to main content
Log in

Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Dioxygen binding at copper enzymatic sites is a fundamental aspect of the catalytic activity observed in many biological systems such as the monooxygenases, especially peptidylglycine α-hydroxylating monooxygenase (PHM), in which two mononuclear CuI sites are involved. Biomimetic models have been developed: dipods, tripods, and, more recently, functionalized calixarenes. The modelling of calixarene systems, although not unreachable for theory yet, requires, however, a number of preliminary investigations to ensure proper calibrations if relevant description of the metal–ligand interaction at the hybrid quantum mechanical/molecular mechanics levels of theory is the aim. In this paper, we report quantum chemistry investigations on a coherent series of representative cuprous tripodal species characterized by (1) monodentate ligands [Cu(ImH)3]+ (where ImH is imidazole), [Cu(MeNH2)3]+ and [Cu(MeNH2)4]+ , (2) neutral tripodal ligands [CuCH(ImH)3]+, [Cu(tren)]+ [where tren is tris(2-aminoethyl)amine], and [Cu(trenMe3)]+ [where trenMe3 is tris(2-methylaminoethyl)amine] and (3) a hydrido-tris(pyrazolyl)borate [CuBH(Pyra)3]. The structures of these complexes, the coordination mode (η 2 side-on or η 1 end-on) of O2 to CuI and the charge transfer from the metal to dioxygen have been computed. For some systems, the coordination by CH3CN and CO is also reported. Beyond results relative to structural properties, an interesting feature is that it is possible to build from computational results only a set of abacuses linking the ν(16O–16O) vibrational frequency of the coordinated O2 molecule to the O–O bond length or to the net charge of the O2 moiety. Such abacuses may help experimentalists in distinguishing between the four possible ways of binding O2 to CuN3 and CuN4 cuprous centres, namely (1) end-on triplet states, (2) side-on triplet states, (3) end-on singlet states and (4) side-on singlet states. These abacuses are extended to three tripods obtained by the substitution of one nitrogen atom by either a phosphorus or a sulphur atom. Moreover, it is shown that any factor favouring pyramidalization at copper favours charge transfer and thus coordination of the incoming O2 moiety. All these allow insight into the coordination mode of O2 and into the charge transfer from CuI in site CuM of PHM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen P, Solomon EI (2004) Proc Natl Acad Sci USA 101:13105

    Article  PubMed  CAS  Google Scholar 

  2. Solomon EI, Chen P, Metz M, Lee S-K, Palmer AE (2001) Angew Chem Int Ed Engl 40:4570

    Article  PubMed  CAS  Google Scholar 

  3. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013

    Article  PubMed  CAS  Google Scholar 

  4. Klinman JP (1996) Chem Rev 96:2541

    Article  PubMed  CAS  Google Scholar 

  5. Stewart LC, Klinman JP (1988) Annu Rev Biochem 57:551

    Article  PubMed  CAS  Google Scholar 

  6. Eipper BA, Stoffers DA, Mains RE (1992) Annu Rev Neurosci 15:57

    Article  PubMed  CAS  Google Scholar 

  7. Evans JP, Ahn K, Klinman JP (2003) J Biol Chem 278:49691

    Article  PubMed  CAS  Google Scholar 

  8. Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE (1993) Protein Sci 2:489

    Article  PubMed  CAS  Google Scholar 

  9. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864

    Article  PubMed  CAS  Google Scholar 

  10. Jaron S, Blackburn NJ (1999) Biochemistry 38:15086

    Article  PubMed  CAS  Google Scholar 

  11. Prigge ST, Mains RE, Eipper BA, Amzel LM (2000) Cell Mol Life Sci 57:1236

    Article  PubMed  CAS  Google Scholar 

  12. Gherman BF, Heppner DE, Tolman WB, Cramer CJ (2006) J Biol Inorg Chem 11:197

    Article  PubMed  CAS  Google Scholar 

  13. Aboelella NW, Gherman BF, Hill LMR, York JT, Holm N, Young VG Jr, Cramer CJ, Tolman WB (2006) J Am Chem Soc 128:3443

    Article  CAS  Google Scholar 

  14. Lewis EA, Tolman WB (2004) Chem Rev 104:1047

    Article  PubMed  CAS  Google Scholar 

  15. Schindler S (2000) Eur J Inorg Chem 11:2311

    Article  Google Scholar 

  16. Karlin KD, Fox S, Nanthakumar A, Muthy NN, Wei N, Obias HV, Martens CF (1995) Pure Appl Chem 67:289

    Article  CAS  Google Scholar 

  17. Johansson AJ, Blomberg MRA, Siegbahn PER (2006) Inorg Chem 45:1491

    Article  PubMed  CAS  Google Scholar 

  18. Fujisawa K, Tanaka M, Moro-Oka Y, Kitajima N (1994) J Am Chem Soc 116:12079

    Article  CAS  Google Scholar 

  19. Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI (2003) J Am Chem Soc 125:466

    Article  PubMed  CAS  Google Scholar 

  20. Spencer DJE, Aboelella NW, Reynolds AM, Holland PL, Tolman WB (2002) J Am Chem Soc 124:2108

    Article  PubMed  CAS  Google Scholar 

  21. Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB (2002) J Am Chem Soc 124:10660

    Article  PubMed  CAS  Google Scholar 

  22. Schatz M, Raab V, Foxon SP, Brehm J, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S (2004) Angew Chem Int Ed Engl 43:4360

    Article  PubMed  CAS  Google Scholar 

  23. Weitzer M, Schindler S, Brehm G, Schneider S, Hörmann E, Jung B, Kaderli S, Zuberbühler AD (2003) Inorg Chem 42:1800

    Article  PubMed  CAS  Google Scholar 

  24. Becker M, Heinemann FW, Schindler S (1999) Chem Eur J 5:3124

    Article  CAS  Google Scholar 

  25. Komiyama K, Furutachi H, Nagamoto S, Hashimoto A, Hayashi H, Fujinami S, Suzuki M, Kitagawa T (2004) Bull Chem Soc Jpn 77:59

    Article  CAS  Google Scholar 

  26. Rondelez Y, Bertho G, Reinaud O (2002) Angew Chem Int Ed Engl 41:1044

    Article  PubMed  CAS  Google Scholar 

  27. Rondelez Y, Sénèque O, Rager M-N, Duprat AF, Reinaud O (2000) Chem Eur J 6:4218

    Article  CAS  Google Scholar 

  28. Sénèque O, Campion M, Douziech B, Giorgi M, Rivière E, Journaux Y, Le Mest Y, Reinaud O (2002) Eur J Inorg Chem 2007

  29. Izzet G, Douziech B, Prangé T, Tomas A, Jabin I, Le Mest Y, Reinaud O (2005) Proc Natl Acad Sci USA 102:6831

    Article  PubMed  CAS  Google Scholar 

  30. Jabin I, Reinaud O (2003) J Org Chem 68:3416

    Article  PubMed  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.2. Gaussian, Pittsburgh

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Ducéré J-M, Goursot A, Berthomieu D (2005) J Phys Chem A 109:400

    Article  PubMed  CAS  Google Scholar 

  36. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560

    Article  CAS  Google Scholar 

  37. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111

    Article  CAS  Google Scholar 

  38. Glendening ED, Reed QE, Carpenter JE, Weinhold F NBO version 3.1

  39. Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41

    Article  Google Scholar 

  40. Carpenter JE (1987) PhD thesis, University of Wisconsin

  41. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  42. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    Article  CAS  Google Scholar 

  43. Reed AE, Weinhold F (1985) J Chem Phys 83:1736

    Article  CAS  Google Scholar 

  44. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  45. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  46. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  48. Aboelella NW, Kryatov SV, Gherman BF, Brennessel WW, Young VG Jr, Sarangi R, Rybak-Akimova EV, Hogson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB (2004) J Am Chem Soc 126:16896

    Article  PubMed  CAS  Google Scholar 

  49. Gherman BF, Cramer CJ (2004) Inorg Chem 43:7281 and supplementary material

    Article  PubMed  CAS  Google Scholar 

  50. Kinsinger CR, Gherman BF, Gagliardi L, Cramer CJ (2005) J Biol Inorg Chem 10:778

    Article  PubMed  CAS  Google Scholar 

  51. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991

    Article  PubMed  CAS  Google Scholar 

  52. Rode MF, Werner H-J (2005) Theor Chem Acc 114:309

    Article  CAS  Google Scholar 

  53. Piquemal J-P, Pilmé J (2006) J Mol Struct (THEOCHEM) 764:77

    Article  CAS  Google Scholar 

  54. Cramer CJ, Squires RR (1999) Org Lett 1:215

    Article  CAS  Google Scholar 

  55. Bérces A, Ziegler T (1995) J Phys Chem 99:11417

    Article  Google Scholar 

  56. Roos BO (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry, vol II. Wiley, New York

  57. McDouall JJ, Peasley K, Robb MA (1988) Chem Phys Lett 148:183

    Article  CAS  Google Scholar 

  58. Izzet G (2004) PhD thesis, Université Paris XI-Orsay

  59. Fujisawa K, Ono T, Ishikawa Y, Amir N, Miyashita Y, Okamato K-I, Lehnert N (2006) Inorg Chem 45:1698

    Article  PubMed  CAS  Google Scholar 

  60. Dias HVR, Kim H-J, Lu H-L, Rajeshwar K, de Tacconi NR, Derecskei-Kovacs A, Marynick DS (1996) Organometallics 15:2994

    Article  CAS  Google Scholar 

  61. Dias HVR, Kim H-J (1996) Organometallics 15:5374

    Article  CAS  Google Scholar 

  62. Lupinetti AJ, Fau S, Frenking G, Strauss SH (1997) J Phys Chem A 101:9551

    Article  CAS  Google Scholar 

  63. Cramer CJ, Tolman WB, Theopold KH, Rheingold AL (2003) Proc Natl Acad Sci USA 100:3635

    Article  PubMed  CAS  Google Scholar 

  64. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235

    Article  PubMed  CAS  Google Scholar 

  65. Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1999) Nat Struct Biol 6:976

    Article  PubMed  CAS  Google Scholar 

  66. Kamachi T, Kihara N, Shiota Y, Yoshizawa K (2005) Inorg Chem 44:4226

    Article  PubMed  CAS  Google Scholar 

  67. Chen P, Solomon EI (2004) J Am Chem Soc 126:4991

    Article  PubMed  CAS  Google Scholar 

  68. McCracken J, Desai PR, Papadopoulos NJ, Villafranca JJ, Peisach J (1988) Biochemistry 27:4133

    Article  PubMed  CAS  Google Scholar 

  69. Brenner MC, Klinman JP (1989) Biochemistry 28:4664

    Article  PubMed  CAS  Google Scholar 

  70. Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467505

    Article  CAS  Google Scholar 

  71. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303:186

    Article  PubMed  CAS  Google Scholar 

  72. Marti S, Roca M, Andrés J, Moliner V, Silla E, Tuńon I, Bertrán J (2004) Chem Soc Rev 33:99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The geometry optimizations and the numerical vibrational calculations reported in this paper were performed at IDRIS (Orsay, France) and CINES (Montpellier, France) national supercomputing centres. The analytical vibrational calculations were performed at the CCRE of the University Pierre et Marie Curie (Paris, France). The CASSCF and CASMP2 calculations were run at the CRIHAN (Saint-Etienne-du-Rouvray, France) regional supercomputing centre thanks to a dedicated CPU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Parisel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Lande, A., Gérard, H., Moliner, V. et al. Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN. J Biol Inorg Chem 11, 593–608 (2006). https://doi.org/10.1007/s00775-006-0107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0107-8

Keywords

Navigation