Skip to main content
Log in

On the structure of Zn(II) and Cu(II) cyanin complexes in aqueous solution

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

B3LYP/6-31++G(d,p) optimizations on models for the metal cyanin, Cy, complexes [MCy(H2O) n ]+, (M = Zn(II), Cu(II); n = 2, 3, 4) in aqueous solution indicate that 4 is the most favoured coordination number in both cases. SP -4 and T -4 geometries are nearly isoenergetic for the former, while SP -4 is the only one obtained for the latter. Anionic cyanin displays higher affinity for Cu(II) than for Zn(II) or Mg(II). The electron density reorganization of cyanin model accompanying the complexation process was analyzed by means of the quantum theory of atoms in molecules. This analysis reveals that: (1) the O4′–M bond is stronger than O3′–M; (2) anionic cyanin displays a dual character between 4′-keto-quinoidal and 3′,4′-dienolate resonance forms; (3) Cu(II) takes more electron density than Zn(II) from Cy and water ligands; (4) when the coordination number increases, each ligand (Cy or water) transfers less electron density; (5) complex formation modifies the electron density in all the atoms of the ligands, but the largest modifications are displayed within the AC bicycle of Cy; and (6) a third part of density lost by the Cy ligand is removed from hydrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brouillard R (1982) In: Markakis P (ed) Anthocyanins as food colors. Academic Press, New York

    Google Scholar 

  2. Castañeda-Ovando A, Pacheco-Hernández L, Páez-Hernández E, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  3. Chou PH, Matsui S, Misaki K, Matsuda T (2007) Isolation and identification of xenobiotic aryl hydrocarbon receptor ligands in dyeing wastewater. Environ Sci Technol 41:652–657

    Article  CAS  Google Scholar 

  4. Harborne J, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  Google Scholar 

  5. Galvano F, La Fauci L, Lazzarino G, Fogliano V, Ritieni A, Ciappellano S, Battistini NC, Tavazzi B, Galvano G (2004) Cyanidins: metabolism and biological properties. J Nutr Biochem 15:2–11

    Article  CAS  Google Scholar 

  6. Strack D, Wray V (1989) In: Harbone JB (ed) Methods in plant biochemistry 1: plant phenolics. Academic Press, London

    Google Scholar 

  7. Haslam E (1998) Practical polyphenolics: from structure to molecular recognition and physiological action. Cambridge University Press, Cambridge

    Google Scholar 

  8. Rastelli G, Costantino L, Albasini A (1993) Physico-chemical properties of anthocyanidins. Part 1. Theoretical evaluation of the stability of the neutral and anionic tautomeric forms. J Mol Struct THEOCHEM 279:157–166

    Article  Google Scholar 

  9. Leopoldini M, Marino T, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  10. Ferreira da Silva P, Lima JC, Freitas AA, Shimizu K, Macanita AL, Quina FH (2005) Charge-transfer complexation as a general phenomenon in the copigmentation of anthocyanins. J Phys Chem A 109:7329–7338

    Article  CAS  Google Scholar 

  11. Woodford JN (2005) A DFT investigation of anthocyanidins. Chem Phys Lett 410:182–187

    Article  CAS  Google Scholar 

  12. Borkowski T, Szymusiak H, Gliszczynska-Swiglo A, Rietjens IMCM, Tyrakowska B (2005) Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. J Agric Food Chem 53:5526–5534

    Article  CAS  Google Scholar 

  13. Sakata K, Saito N, Honda T (2006) Ab initio study of molecular structures and excited states in anthocyanidins. Tetrahedron 62:3721–3731

    Article  CAS  Google Scholar 

  14. Leopoldini M, Russo N, Toscano M (2006) Gas and liquid phase acidity of natural antioxidants. J Agric Food Chem 54:3078–3085

    Article  CAS  Google Scholar 

  15. Estévez L, Mosquera RA (2008) Where is the positive charge of flavylium cations. Chem Phys Lett 451:121–126

    Article  Google Scholar 

  16. Guzmán R, Santiago C, Sánchez M (2009) A density functional study of antioxidant properties on anthocyanidins. J Mol Struct 935:110–114

    Article  Google Scholar 

  17. Estévez L, Mosquera RA (2009) Conformational and substitution effects on the electron distribution in a series of anthocyanidins. J Phys Chem A 113:9908–9919

    Article  Google Scholar 

  18. Estévez L, Otero N, Mosquera RA (2010) A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins. J Phys Chem B 114:9706–9712

    Article  Google Scholar 

  19. Monica L, Russo N, Toscano M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125:288–306

    Article  Google Scholar 

  20. Calzolari A, Monti S, Ruini A, Catellani A (2010) Hydration of cyanin dyes. J Chem Phys 132:114304-1–114304-9

    Article  Google Scholar 

  21. Anderson ØM, Jordheim M (2006) In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  22. Kondo T, Ueda M, Isobe M, Goto T (1998) A new molecular mechanism of blue color development with protocyanin a supramolecular pigment from cornflower, Centaurea cyanus. Tetrahedron Lett 39:8307–8310

    Article  CAS  Google Scholar 

  23. Shiono M, Matsugaki N, Takeda K (2005) Structure of the blue cornflower pigment. Nature 436:791

    Article  CAS  Google Scholar 

  24. Marković JMD, Veselinović DS, Baranac JM, Brdarić TP (2008) Spectroscopic and theoretical study of cyanidin–aluminum (III) complexes. Spectrosc Lett 41:104–115

    Article  Google Scholar 

  25. Estévez L, Otero N, Mosquera RA (2011) Molecular structure of cyanidin metal complexes: Al(III) versus Mg(II). Theor Chem Acc 128:485–495

    Article  Google Scholar 

  26. Kirchgessner M, Weigand E (1979) In: Sigel H (ed) Metal ions in biological systems 15: zinc and its role in biology and nutrition. Marcel Dekker, New York

    Google Scholar 

  27. Martin RB (1986) In: Sigel H (ed) Metal ions in biological systems 20: concepts and metal ion toxicity. Marcel Dekker, New York

    Google Scholar 

  28. Esparza I, Santamaría C, García-Mina JM, Fernández JM (2007) Complexing capacity profiles of naturally occurring ligands in Tempranillo wines for Cu and Zn. An electroanalytical approach for cupric casse. Anal Chim Acta 599:67–75

    Article  CAS  Google Scholar 

  29. Bodini ME, del Valle MA, Tapia R, Leighton F, Berrios P (2001) Zinc catechin complexes in aprotic medium. Redox chemistry and interaction with superoxide radical anion. Polyhedron 20:1005–1009

    Article  CAS  Google Scholar 

  30. Le Nest G, Caille O, Woudstra M, Roche S, Burlat B, Belle V, Guigliarelli B, Lexa D (2004) Zn–polyphenol chelation: complexes with quercetin, (+)-catechin, and derivatives: II electrochemical and EPR studies. Inorg Chim Acta 357:2027–2037

    Article  Google Scholar 

  31. Vestergaard M, Kerman K, Tamiya E (2005) An electrochemical approach for detecting copper-chelating properties of flavonoids using disposable pencil graphite electrodes: possible implications in copper-mediated illnesses. Anal Chim Acta 538:273–281

    Article  CAS  Google Scholar 

  32. Esparza I, Salinas I, Santamaría C, García-Mina JM, Fernández JM (2005) Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal Chim Acta 543:267–274

    Article  CAS  Google Scholar 

  33. Esparza I, Salinas I, Caballero I, Santamaría C, Calvo I, García-Mina JM, Fernández JM (2004) Evolution of metal and polyphenol content over a 1-year period of vinification: sample fractionation and correlation between metals and anthocyanins. Anal Chim Acta 524:215–224

    Article  CAS  Google Scholar 

  34. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  35. Tomasi J, Mennuci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham, MA Peng, CY Nanayakkara, A Challacombe, M Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Inc., Wallingford

  37. Rezabal E, Mercero JM, Lopez X, Ugalde JM (2007) A theoretical study of the principles regulating the specificity for Al(III) against Mg(II) in protein cavities. J Inorg Biochem 101:1192–1200

    Article  CAS  Google Scholar 

  38. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  39. Biegler-König FW, Schönbohm J, Bayles D (2001) AIM2000. J Comp Chem 22:545–559

    Article  Google Scholar 

  40. Bader RFW. AIMPAC: a suite of programs for the theory of atoms in molecules; McMaster University, Hamilton. http://www.chemistry.mcmaster.ca/aimpac/download/download.htm

  41. Estévez L, Mosquera RA (2007) A density functional theory study on pelargonidin. J Phys Chem A 111:11100–11109

    Article  Google Scholar 

  42. Estévez L, Mosquera RA (2008) Molecular structure and antioxidant properties of delphinidin. J Phys Chem A 112:10614–10623

    Article  Google Scholar 

  43. González Moa MJ, Mosquera RA (2003) Applicability of resonance forms in pyrimidinic bases. An AIM study. J Phys Chem A 107:5361–5367

    Article  Google Scholar 

  44. Glaser R, Horan CJ, Lewis M, Zollinger H (1999) σ-Dative and π-backdative phenyl cation–dinitrogen interactions and opposing sign reaction constants in dual substituent parameter relations. J Org Chem 64:902–913

    Article  CAS  Google Scholar 

  45. Persson I (2010) Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl Chem 82:1901–1917

    Article  CAS  Google Scholar 

  46. Deeth RJ, Randell K (2008) Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes. Inorg Chem 47:7377–7388

    Article  CAS  Google Scholar 

  47. Johnson DA, Nelson PG (1995) Factors determining the ligand field stabilization energies of the hexaaqua 2+ complexes of the first transition series and the Irving–Williams order. Inorg Chem 34:5666–5671

    Article  CAS  Google Scholar 

  48. Bryantsev VS, Diallo MS, van Duin ACT, Goddard WA III (2008) Hydration of copper(II): new insights from density functional theory and the COSMO solvation model. J Phys Chem A 112:9104–9112

    Article  CAS  Google Scholar 

  49. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–556

    Article  CAS  Google Scholar 

  50. Langmuir I (1921) Types of valence. Science 54:59–67

    Article  CAS  Google Scholar 

  51. Cirera J, Alemany P, Alvarez S (2004) Mapping the stereochemistry and symmetry of tetracoordinate transition-metal complexes. Chem Eur J 10:190–207

    Article  CAS  Google Scholar 

  52. Ribas GJ (2008) Coordination chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  53. Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D (2005) Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord Chem Rev 249:1693–1708

    Article  CAS  Google Scholar 

  54. Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57:1259–1282

    Google Scholar 

  55. Cortés-Guzmán F, Bader RFW (2005) Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes. Coord Chem Rev 249:633–662

    Article  Google Scholar 

  56. González Moa MJ, Mandado M, Mosquera RA (2006) Explaining the sequence of protonation affinities of cytosine with QTAIM. Chem Phys Lett 428:255–261

    Article  Google Scholar 

  57. Ferro-Costas D, Mosquera RA (2013) Influence of the O-protonation in the O=C–O–Me Z preference. A QTAIM study. J Phys Chem A 117:257–265

    Article  CAS  Google Scholar 

  58. Holleman AF, Wiberg E (2001) Inorganic chemistry. Academic Press, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors thank “Centro de Supercomputación de Galicia” (CESGA) for free access to its computational facilities, and financial support from Spanish Ministry of Economy through research project CTQ2010-21500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Mosquera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2014_445_MOESM1_ESM.doc

Supplementary material 1 (DOC 388 kb): Absolute values for atomic electron populations in the model of anionic cyanin and their variations upon complexation in the diverse cases here considered are available as Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Bugarín, M., Mosquera, R.A. On the structure of Zn(II) and Cu(II) cyanin complexes in aqueous solution. Struct Chem 25, 1647–1657 (2014). https://doi.org/10.1007/s11224-014-0445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0445-z

Keywords

Navigation