Skip to main content
Log in

Theoretical study of the catalytic reaction mechanism of MndD

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Manganese-dependent homoprotocatechuate 2,3-dioxygenase (MndD) is an enzyme taking part in the catabolism of aromatic compounds in the environment. It uses molecular oxygen to perform an extradiol cleavage of the ring of the ortho-dihydroxylated aromatic compound homoprotocatechuate. A theoretical investigation of the reaction path for MndD was performed using hybrid density functional theory with the B3LYP functional, and a catalytic mechanism has been suggested. Models of different size were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the substrate first binds at the active site as a monoanion. Next the dioxygen is bound, forming a hydroperoxo intermediate. The O–O bond, activated in this way undergoes homolytic cleavage leading to an oxyl and then to an extra epoxide radical with subsequent opening of the aromatic ring. The lactone ring is then hydrolyzed by the Mn-bound OH group, and the final product is obtained in the last reaction steps. Alternative reaction paths were considered, and their calculated barriers were found to be higher than for the suggested mechanism. The selectivity between the extra- and intra-cleavage pathways was found to be determined by the barriers for the decay of the radical state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Scheme 5
Fig. 7
Fig. 8
Scheme 6
Fig. 9
Fig. 10
Fig. 11
Scheme 7
Fig. 12
Scheme 8
Fig. 13
Scheme 9
Fig. 14
Scheme 10

Similar content being viewed by others

References

  1. Ornston LN, Stanier RY (1966) J Biol Chem 241:3776–3786

    PubMed  CAS  Google Scholar 

  2. Dagley S (1977) Surv Prog Chem 8:121–170

    CAS  Google Scholar 

  3. Broderick JB (1999) Essays Biochem 34:173–189

    PubMed  CAS  Google Scholar 

  4. Lipscomb JD, Orville AM (1992) Met Ions Biol Syst 28:243–298

    CAS  Google Scholar 

  5. Que L Jr, Ho RYN (1996) Chem Rev 96:2607–2624

    Article  PubMed  CAS  Google Scholar 

  6. Boldt YR, Sadowsky MJ, Ellis LBM, Que L Jr, Wackett LP (1995) J Bacteriol 177:1225–1232

    PubMed  CAS  Google Scholar 

  7. Vetting MW, Wackett LP, Que L Jr, Lipscomb JD, Ohlendorf DH (2004) J Bacteriol 186:1945–1958

    Article  PubMed  CAS  Google Scholar 

  8. Bassan A, Borowski T, Siegbahn PEM (2004) Dalton Trans 3153–3162

  9. Que L Jr (2000) Nat Struct Biol 7:182–184

    Article  PubMed  CAS  Google Scholar 

  10. Whiting AK, Boldt YR, Hendrich LP, Wackett LP, Que L Jr (1996) Biochemistry 35:160–170

    Article  PubMed  CAS  Google Scholar 

  11. Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nokana T, Masai E, Fukuda M, Senda T (2002) J Mol Biol 321:621–636

    Article  PubMed  CAS  Google Scholar 

  12. Deeth RJ, Bugg TDH (2003) J Biol Inorg Chem 8:409

    PubMed  CAS  Google Scholar 

  13. Bugg TDH, Lin G (2001) Chem Commun 11:941–952

    Article  Google Scholar 

  14. Miller MA, Lipscomb JD (1996) J Biol Chem 271:5524–5535

    Article  PubMed  CAS  Google Scholar 

  15. Shu L, Chiou YM, Orville AM, Miller MA, Lipscomb JD, Que L Jr (1995) Biochemistry 34:6649–6659

    Article  PubMed  CAS  Google Scholar 

  16. Groce SL, Lipscomb JD (2005) Biochemistry 44:7175–7188

    Article  PubMed  CAS  Google Scholar 

  17. Arciero DM, Orville AM, Lipscomb JD (1985) J Biol Chem 260:14035–14044

    PubMed  CAS  Google Scholar 

  18. Emerson J, Wagner ML, Reynolds MF, Que L Jr, Sadowsky MJ, Wacket LP (2005) J Biol Inorg Chem 10:751–760

    Article  PubMed  CAS  Google Scholar 

  19. Schrödinger Inc (2000) JAGUAR 4.0. Schrödinger, Portland

  20. Frisch MJ et al (2003) Gaussian 03, revision B.03. Gaussian, Pittsburgh

  21. Himo F (2005) Biochim Biophys Acta Bioenerg 1707:24–33

    Article  CAS  Google Scholar 

  22. Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932

    Article  PubMed  CAS  Google Scholar 

  23. Borowski T, Georgiev V, Siegbahn PEM (2005) J Am Chem Soc 127:17303–17314

    Article  PubMed  CAS  Google Scholar 

  24. Bugg TDH (2003) Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  25. Shaik S, Kumar D, de Viser S, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Georgiev.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, V., Borowski, T. & Siegbahn, P.E.M. Theoretical study of the catalytic reaction mechanism of MndD. J Biol Inorg Chem 11, 571–585 (2006). https://doi.org/10.1007/s00775-006-0106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0106-9

Keywords

Navigation