Skip to main content
Log in

The role of histidine 200 in MndD, the Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2, a site-directed mutagenesis study

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The manganese-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase (MndD) from Arthrobacter globiformis CM-2 is an extradiol-cleaving catechol dioxygenase that catalyzes aromatic ring cleavage of 3,4-dihydroxyphenylacetate (DHPA). Based on the recent crystal structure of the MndD–DHPA complex, a series of site-directed mutations were made at a conserved second-sphere residue, histidine 200, to gain insight into and clarify the role this residue plays in the Mn(II)-dependent catalytic mechanism. In this study, we report the activities and spectroscopic data of these H200 variants and their DHPA and 4-nitrocatechol (4-NC) complexes. The data collected from wild-type and mutant MndDs are consistent with a role for H200 interacting with a manganese-bound dioxygen moiety and are inconsistent with other previously proposed roles involving proton transfer. Spectroscopic observations, including unique low-field EPR signals found when DHPA and 4-NC are bound to the Mn(II) center of MndD, are discussed and their relationship to dioxygen activation catalyzed in MndD is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BphC:

2,3-Dihydroxybiphenyl 1,2-dioxygenase

CHMSA:

5-(Carboxymethyl)-2-hydroxymuconic semialdehyde

CTD:

Catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1

DHPA:

3,4-Dihydroxyphenylacetate or homoprotocatechuate

DHPP:

2,3-Dihydroxyphenyl propionic acid

EPR:

Electron paramagnetic resonance

HPCD:

Fe(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Brevibacterium fuscum

Mb:

Myoglobin

MhpB:

Fe(II)-dependent 2,3-dihydroxyphenylpropionate 1,2-dioxygenase from Escherichia coli

MndD:

Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2

4-NC:

4-Nitrocatechol

ZFS:

Zero-field splitting

References

  1. Timmis KN, Pieper DH (1999) Trends Biotechnol 17:201–204

    Article  CAS  Google Scholar 

  2. Lipscomb JD, Orville AM (1992) In: Sigel H, Sigel A (eds) Metal Ions in Biological Systems, Marcel Dekker, New York, pp 243–298

  3. Bugg TDH, Sanvoisin J, Spence EL (1997) Biochem Soc Trans 25:81–85

    PubMed  CAS  Google Scholar 

  4. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  PubMed  CAS  Google Scholar 

  5. Eltis LD, Bolin JT (1996) J Bacteriol 178:5930–5937

    PubMed  CAS  Google Scholar 

  6. Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT (1995) Science 270:976–980

    Article  PubMed  CAS  Google Scholar 

  7. Senda T, Sugiyama K, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y (1996) J Mol Biol 255:735–752

    Article  PubMed  CAS  Google Scholar 

  8. Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nonaka T, Masai E, Fukuda M, Senda T (2002) J Mol Biol 321:621–636

    Article  PubMed  CAS  Google Scholar 

  9. Vetting MW, Wackett LP, Que L Jr, Lipscomb JD, Ohlendorf DH (2004) J Bacteriol 186:1945–1958

    Article  PubMed  CAS  Google Scholar 

  10. Kita A, Kita S, Fujisawa I, Inaka K, Ishida T, Horiike K, Nozaki M, Miki K (1999) Structure 7:25–34

    Article  PubMed  CAS  Google Scholar 

  11. Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y (1999) Structure 7:953–965

    Article  PubMed  CAS  Google Scholar 

  12. Uragami Y, Senda T, Sugimoto K, Sato N, Nagarajan V, Masai E, Fukuda M, Mitsui Y (2001) J Inorg Biochem 83:269–279

    Article  PubMed  CAS  Google Scholar 

  13. Vaillancourt FH, Barbosa CJ, Spiro TG, Bolin JT, Blades MW, Turner RFB, Eltis LD (2002) J Am Chem Soc 124:2485–2496

    Article  PubMed  CAS  Google Scholar 

  14. Koehntop KD, Emerson JP, Que L Jr (2005) J Biol Inorg Chem 10:83–97

    Article  CAS  Google Scholar 

  15. Shu L, Chiou Y-M, Orville AM, Miller MA, Lipscomb JD, Que L Jr (1995) Biochemistry 34:6649–6659

    Article  PubMed  CAS  Google Scholar 

  16. Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932

    Article  PubMed  CAS  Google Scholar 

  17. Groce SL, Lipscomb JD (2003) J Am Chem Soc 125:11780–11781

    Article  PubMed  CAS  Google Scholar 

  18. Groce SL, Lipscomb JD (2005) Biochemistry 44: 7175–7188

    Article  PubMed  CAS  Google Scholar 

  19. Mendel S, Arndt A, Bugg TDH (2004) Biochemistry 43:13390–13396

    Article  PubMed  CAS  Google Scholar 

  20. Viggiani A, Siani L, Notomista E, Birolo L, Pucci P, Di Donato A (2004) J Biol Chem 47:48630–48639

    Article  CAS  Google Scholar 

  21. Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K (2003) J Biol Chem 278:21483–21492

    Article  PubMed  CAS  Google Scholar 

  22. Que L Jr, Widom J, Crawford RL (1981) J Biol Chem 256:10941–10944

    PubMed  CAS  Google Scholar 

  23. Boldt YR, Sadowsky MJ, Ellis LBM, Que L Jr, Wackett LP (1995) J Bacteriol 177:1225–1232

    PubMed  CAS  Google Scholar 

  24. Breckau D, Mahlitz E, Sauerwald A, Layer G, Jahn D (2003) J Biol Chem 278:46625–46631

    Article  PubMed  CAS  Google Scholar 

  25. Su C, Sahlin M, Oliw EH (2000) J Biol Chem 275:18830–18835

    Article  PubMed  CAS  Google Scholar 

  26. Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L Jr (1996) Biochemistry 35:160–170

    Article  PubMed  CAS  Google Scholar 

  27. Miller MA, Lipscomb JD (1996) J Biol Chem 271:5524–5535

    Article  PubMed  CAS  Google Scholar 

  28. Groce SL, Miller-Rodeberg MA, Lipscomb JD (2004) Biochemistry 43:15141–15153

    Article  PubMed  CAS  Google Scholar 

  29. Vance CK, Miller A-F (1998) J Am Chem Soc 120:461–467

    Article  CAS  Google Scholar 

  30. Vance CK, Miller A-F (2001) Biochemistry 40:13079–13087

    Article  PubMed  CAS  Google Scholar 

  31. Jackson TA, Brunold TC (2004) Acc Chem Res 37:461–470

    Article  PubMed  CAS  Google Scholar 

  32. Substituted catechols include 3,4-dihydroxyphenylacetate (DHPA), 3,4-dihydroxyphenyl-2-hydroxyacetate (DL-mandelate), 3,4-dihydroxyphenylpropanoate, 3,4-dihydroxybenzoate (protocatechuate), and 4-nitrocatechol (4-NC), which were all purchased from Aldrich Chemical Co.

  33. Tyson CA (1975) J Biol Chem 250:1765–1770

    PubMed  CAS  Google Scholar 

  34. Springer BA, Sligar SG, Olson JS, Phillips GN Jr (1994) Chem Rev 94:699–714

    Article  CAS  Google Scholar 

  35. Olson JS, Phillips GN Jr (1997) J Biol Inorg Chem 2:544–552

    Article  CAS  Google Scholar 

  36. Miller A-F, Padmakumar K, Sorkin DL, Karapetian A, Vance CK (2003) J Inorg Biochem 93:71–83

    Article  PubMed  CAS  Google Scholar 

  37. Chiou Y-M, Que L Jr (1995) Inorg Chem 34:3577–3578

    Article  CAS  Google Scholar 

  38. Reynolds MF, Costas M, Ito M, Jo D-H, Tipton AA, Whiting AK, Que L Jr (2003) J Biol Inorg Chem 8:263–272

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the National Institutes of Health (GM 43315 to LQ and LPW, GM 33162 to LQ, GM 08347 for MLW, and GM 072287 to JPE), the BioTechnology Institute at the University of Minnesota (LPW), and the University of Minnesota Agricultural Experiment Station (MJS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Que Jr.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerson, J.P., Wagner, M.L., Reynolds, M.F. et al. The role of histidine 200 in MndD, the Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2, a site-directed mutagenesis study. J Biol Inorg Chem 10, 751–760 (2005). https://doi.org/10.1007/s00775-005-0017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0017-1

Keywords

Navigation