Skip to main content

Advertisement

Log in

Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

EPR spectra were recorded for methionine aminopeptidase from Escherichia coli (EcMetAP-I) samples (~2.5 mM) to which one and two equivalents of Mn(II) were added (the latter is referred to as [MnMn(EcMetAP-I)]). The spectra for each sample were indistinguishable except that the spectrum of [MnMn(EcMetAP-I)] was twice as intense. The EPR spectrum of [MnMn(EcMetAP-I)] exhibited the characteristic six-line g≈2 EPR signal of mononuclear Mn(II) with Aav(55Mn)=9.3 mT (93 G) and exhibited Curie-law temperature dependence. This signal is typical of Mn(II) in a ligand sphere comprising oxygen and/or nitrogen atoms. Other features in the spectrum were observed only as the temperature was raised from that of liquid helium. The temperature dependences of these features are consistent with their assignment to excited state transitions in the S=1, 2 ... 5 non-Kramer’s doublets, due to two antiferromagnetically coupled Mn(II) ions with an S=0 ground state. This assignment is supported by the observation of a characteristic 4.5 mT hyperfine pattern, and by the presence of signals in the parallel mode consistent with a non-Kramers’ spin ladder. Upon the addition of the anti-angiogenesis agent fumagillin to [MnMn(EcMetAP-I)], very small changes were observed in the EPR spectrum. MALDI-TOF mass spectrometry indicated that fumagillin was, however, covalently coordinated to EcMetAP-I. Therefore, the inhibitory action of this anti-angiogenesis agent on EcMetAP-I appears to involve covalent binding to a polypeptide component at or near the active site rather than direct binding to the metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7A, B
Fig. 8

Similar content being viewed by others

Abbreviations

AMPP:

aminopeptidase P from E. coli

EcMetAP-I:

methionine aminopeptidase from E. coli

ZFS:

zero field splitting

References

  1. Bradshaw RA (1989) Trends Biochem Sci 14:276–279

    Article  CAS  PubMed  Google Scholar 

  2. Meinnel T, Mechulam Y, Blanquet S (1993) Biochimie 75:1061–1075

    Article  CAS  PubMed  Google Scholar 

  3. Bradshaw RA, Brickey WW, Walker KW (1998) Trends Biochem Sci 23:263–267

    Article  CAS  PubMed  Google Scholar 

  4. Arfin SM, Bradshaw RA (1988) Biochemistry 27:7979–7984

    CAS  PubMed  Google Scholar 

  5. Tobias JW, Shrader TE, Rocap G, Varshavsky A (1991) Science 254:1374–1377

    CAS  PubMed  Google Scholar 

  6. Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, Bradshaw RA (1995) Proc Natl Acad Sci USA 92:7714–7718

    PubMed  Google Scholar 

  7. Bachmair A, Finley D, Varshavsky A (1986) Science 234:179–234

    CAS  PubMed  Google Scholar 

  8. Rajagopalan PTR, Datta A, Pei D (1997) Biochemistry 36:13910–13918

    Article  CAS  PubMed  Google Scholar 

  9. Chang S-YP, McGary EC, Chang S (1989) J Bacteriol 171:4071–4072

    CAS  PubMed  Google Scholar 

  10. Chang Y-H, Teichert U, Smith JA (1992) J Biol Chem 267:8007–8011

    CAS  PubMed  Google Scholar 

  11. Li X, Chang Y-H (1995) Proc Natl Acad Sci USA 92:12357–12361

    CAS  PubMed  Google Scholar 

  12. Miller CG, Kukral AM, Miller JL, Movva NR (1989) J Bacteriol 171:5215–5217

    CAS  PubMed  Google Scholar 

  13. Kruger EA, Figg WD (2000) Expert Opin Invest Drugs 9:1383–1395

    CAS  Google Scholar 

  14. Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I (1998) J Mol Biol 284:101–124

    Article  CAS  PubMed  Google Scholar 

  15. Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW (1999) Biochemistry 38:7678–7688

    Article  CAS  PubMed  Google Scholar 

  16. Roderick LS, Matthews BW (1993) Biochemistry 32:3907–3912

    CAS  PubMed  Google Scholar 

  17. Liu S, Widom J, Kemp CW, Crews CM, Clardy J (1998) Science 282:1324–1327

    Article  CAS  PubMed  Google Scholar 

  18. Oefner C, Douangamath A, D’Arcy A, Hafeli S, Mareque D, MacSweeney A, Padilla J, Pierau S, Schulz H, Thormann M, Wadman S, Dale GE ( 2003) J Mol Biol 332:13–21

    Google Scholar 

  19. Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Izu Y, Tsunasawa S, Kato I, Yutani K (1997) Acta Crystallogr Sect D 53:798–801

    Article  CAS  Google Scholar 

  20. D’souza VM, Bennett B, Copik AJ, Holz RC (2000) Biochemistry 39:3817–3826

    Article  PubMed  Google Scholar 

  21. Cosper NJ, D’souza V, Scott R, Holz RC (2001) Biochemistry 40:13302–13309

    Article  CAS  PubMed  Google Scholar 

  22. Meng L, Ruebush S, D’souza VM, Copik AJ, Tsunasawa S, Holz RC (2002) Biochemistry 41:7199–7208

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Sheppard GS, Lou P, Kawai M, Park C, Egan DA, Schneider A, Bouska J, Lesniewski R, Henkin J (2003) Biochemistry 42:5035–5042

    Article  CAS  PubMed  Google Scholar 

  24. D’souza VM, Swierczek SI, Cosper NJ, Meng L, Ruebush S, Copik AJ, Scott RA, Holz RC (2002) Biochemistry 41:13096–13105

    Article  PubMed  Google Scholar 

  25. D’souza VM, Holz RC (1999) Biochemistry 38:11079–11085

    Article  PubMed  Google Scholar 

  26. Griffith EC, Su Z, Turk BE, Chen S, Chang Y-H, Wu Z, Biemann K, Liu JO (1997) Chem Biol 4:461–471

    Article  CAS  PubMed  Google Scholar 

  27. Sin N, Meng L, Wang MQW, Wen JJ, Bornmann WG, Crews CM (1997) Proc Natl Acad Sci USA 94:6099–6103

    Article  CAS  PubMed  Google Scholar 

  28. Lowther WT, McMillen DA, Orville AM, Matthews BW (1998) Proc Natl Acad Sci USA 95:12153–12157

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Gou X-C, Yi T, Yoshimoto T, Pei D (2000) Anal Biochem 280:159–165

    Article  CAS  PubMed  Google Scholar 

  30. Brown RS, Lennon JJ (1995) Anal Chem 67:1998

    CAS  PubMed  Google Scholar 

  31. Brown RS, Lennon JJ (1995) Anal Chem 67:3990

    CAS  PubMed  Google Scholar 

  32. Bennett B, Holz RC (1997) J Am Chem Soc 119:1923–1933

    Article  CAS  Google Scholar 

  33. Bennett B, Holz RC (1997) Biochemistry 36:9837–9846

    Article  CAS  PubMed  Google Scholar 

  34. Copik AJ, Nocek B, Swierczek SI, Ruebush S, SeBok J, D’souza VM, Peters J, Bennett B, Holz RC (2004) Biochemistry 43:(in press)

  35. Reed GH, Markham GD (1984) Biol Magn Reson 6:73–142

    CAS  Google Scholar 

  36. Griscom DL, Griscom RE (1967) J Chem Phys 47:2711–2722

    CAS  Google Scholar 

  37. Schreurs JWH (1978) J Chem Phys 69:2151–2156

    Article  CAS  Google Scholar 

  38. Rusnak F, Yu L, Todorovic S, Mertz P (1999) Biochemistry 38:6943–6952

    Article  CAS  PubMed  Google Scholar 

  39. Khangulov SV, Pessiki PJ, Barynin VV, Ash DE, Dismukes GC (1995) Biochemistry 34:2015–2025

    CAS  PubMed  Google Scholar 

  40. Khangulov SV, Sossong TMJ, Ash DE, Dismukes GC (1998) Biochemistry 37:8539–8550

    Article  CAS  PubMed  Google Scholar 

  41. Baranowski J, Cukierda T, Jezowska-Trzebiatowska B, Kozlowski H (1979) J Magn Reson 33:585–593

    CAS  Google Scholar 

  42. Lowther TW, Zhang Y, Sampson PB, Honek JF, Matthews BW (1999) Biochemistry 38:14810–14819

    Article  CAS  PubMed  Google Scholar 

  43. Wilcox DE (1996) Chem Rev 96:2435–2458

    Article  CAS  PubMed  Google Scholar 

  44. Wilce MCJ, Bond CS, Dixon NE, Freeman HC, Guss JM, Lilley PE, Wilce JA (1998) Proc Natl Acd Sci USA 95:3472–3477

    Article  CAS  Google Scholar 

  45. Zhang L, Crossley MJ, E. DN, Ellis PJ, Fisher ML, King GF, Lilley PE, MacLachlan D, Pace RJ, Freeman HC (1998) J Biol Inorg Chem 3:470–483

    Article  CAS  Google Scholar 

  46. Drago RS (1992) Physical methods for chemists, 2nd edn. Saunders, Orlando, Fla., USA

  47. Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L (1996) Biochemistry 35:160–170

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto T, Sudo K, Fujita T (1994) Anticancer Res 14:XXX–XXX

    Google Scholar 

  49. Sin N, Meng L, Wang MQ, Wen JJ, Bornmann WG, Crews CM (1997) Proc Natl Acad Sci USA 94:6099–6103

    Article  CAS  PubMed  Google Scholar 

  50. Turk BE, Su Z, Liu JO (1998) Bioorg Med Chem 6:1163–1169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM-56495 to R.C.H. and AI-056231 to B.B.) and the National Science Foundation (CHE-0240810 to R.C.H.). The Bruker ESP-300E EPR and ARX-400 NMR spectrometers were purchased with funds provided by the National Science Foundation (BIR-9413530 and CHE-9311730, respectively) and Utah State University. The methionyl aminopeptidase from E. coli was purified from a stock culture kindly provided by Drs Brian Matthews and W. Todd Lowther. The program EPRSim XOP was made available by Dr John Boswell, Oregon Graduate Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Holz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’souza, V.M., Brown, R.S., Bennett, B. et al. Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli. J Biol Inorg Chem 10, 41–50 (2005). https://doi.org/10.1007/s00775-004-0611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0611-7

Keywords

Navigation