Skip to main content

Advertisement

Log in

The functional mechanism of simvastatin in experimental osteoporosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis is a systemic and metabolic bone disease. New drugs with good curative effect, fewer side effects, and high safety need to be developed urgently. Recently, simvastatin has been used to treat osteoporosis more frequently; however, its clinical effect and treatment mechanism are still unknown. With the use of animal models, the treatment effectiveness of simvastatin on experimental osteoporosis was investigated and the functional mechanism was preliminarily explored. The results show that simvastatin significantly increased the mechanical parameters such as maximum load, stiffness, and energy-absorbing capacity, and improved the microarchitecture. They indicated that the antiosteoporosis activity of simvastatin may be due to the promotion of proliferation and differentiation of osteoblasts. Simvastatin was effective in treating experimental osteoporosis. This study provides necessary experimental evidence for the clinical application of simvastatin in osteoporosis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Du Z, Chen J, Yan F, Xiao Y (2009) Effects of simvastatin on bone healing around titanium implants in osteoporotic rats. Clin Oral Implants Res 20:145–150

    Article  PubMed  Google Scholar 

  2. Lasota A, Danowska-Klonowska D (2004) Experimental osteoporosis–different methods of ovariectomy in female white rats. Rocz Akad Med Bialymst 49(Suppl 1):129–131

    PubMed  Google Scholar 

  3. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4–S9

    Article  PubMed  Google Scholar 

  4. Shirke SS, Jadhav SR, Jagtap AG (2008) Methanolic extract of Cuminum cyminum inhibits ovariectomy-induced bone loss in rats. Exp Biol Med (Maywood) 233:1403–1410

    Article  CAS  Google Scholar 

  5. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916

    Article  PubMed  CAS  Google Scholar 

  6. Grey A, Reid IR (2005) Emerging and potential therapies for osteoporosis. Expert Opin Investig Drugs 14:265–278

    Article  PubMed  CAS  Google Scholar 

  7. Lane NE, Kelman A (2003) A review of anabolic therapies for osteoporosis. Arthritis Res Ther 5:214–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dominguez LJ, Scalisi R, Barbagallo M (2010) Therapeutic options in osteoporosis. Acta Biomed 81(Suppl 1):55–65

    PubMed  Google Scholar 

  9. Lacey JV Jr, Mink PJ, Lubin JH, Sherman ME, Troisi R et al (2002) Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288:334–341

    Article  PubMed  CAS  Google Scholar 

  10. Reginster JY, Sarlet N (2006) The treatment of severe postmenopausal osteoporosis: a review of current and emerging therapeutic options. Treat Endocrinol 5:15–23

    Article  PubMed  Google Scholar 

  11. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333

    Article  PubMed  CAS  Google Scholar 

  12. Salari Sharif P, Abdollahi M, Larijani B (2011) Current, new and future treatments of osteoporosis. Rheumatol Int 31:289–300

    Article  PubMed  CAS  Google Scholar 

  13. Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H (2000) HMG-CoA reductase inhibitors and the risk of fractures. JAMA 283:3205–3210

    Article  PubMed  CAS  Google Scholar 

  14. Wang PS, Solomon DH, Mogun H, Avorn J (2000) HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 283:3211–3216

    Article  PubMed  CAS  Google Scholar 

  15. Mundy G, Garrett R, Harris S, Chan J, Chen D et al (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946–1949

    Article  PubMed  CAS  Google Scholar 

  16. Emmanuele L, Ortmann J, Doerflinger T, Traupe T, Barton M (2003) Lovastatin stimulates human vascular smooth muscle cell expression of bone morphogenetic protein-2, a potent inhibitor of low-density lipoprotein-stimulated cell growth. Biochem Biophys Res Commun 302:67–72

    Article  PubMed  CAS  Google Scholar 

  17. Hatano H, Maruo A, Bolander ME, Sarkar G (2003) Statin stimulates bone morphogenetic protein-2, aggrecan, and type 2 collagen gene expression and proteoglycan synthesis in rat chondrocytes. J Orthop Sci 8:842–848

    Article  PubMed  CAS  Google Scholar 

  18. Song C, Guo Z, Ma Q, Chen Z, Liu Z et al (2003) Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 308:458–462

    Article  PubMed  CAS  Google Scholar 

  19. Sugiyama M, Kodama T, Konishi K, Abe K, Asami S et al (2000) Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun 271:688–692

    Article  PubMed  CAS  Google Scholar 

  20. Izumo N, Fujita T, Nakamuta H, Koida M (2001) Lipophilic statins can be osteogenic by promoting osteoblastic calcification in a Cbfa1- and BMP-2-independent manner. Methods Find Exp Clin Pharmacol 23:389–394

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Cui Q, Kao C, Wang GJ, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659

    Article  PubMed  CAS  Google Scholar 

  22. Wong RW, Rabie AB (2005) Early healing pattern of statin-induced osteogenesis. Br J Oral Maxillofac Surg 43:46–50

    Article  PubMed  Google Scholar 

  23. Alam S, Ueki K, Nakagawa K, Marukawa K, Hashiba Y et al (2009) Statin-induced bone morphogenetic protein (BMP) 2 expression during bone regeneration: an immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:22–29

    Article  PubMed  Google Scholar 

  24. Rizzo M, Rini GB (2006) Statins, fracture risk, and bone remodeling: what is true? Am J Med Sci 332:55–60

    Article  PubMed  Google Scholar 

  25. Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME et al (2006) Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skelet Radiol 35:34–41

    Article  CAS  Google Scholar 

  26. Li GW, Tang GY, Liu Y, Tang RB, Peng YF et al (2012) MR spectroscopy and micro-CT in evaluation of osteoporosis model in rabbits: comparison with histopathology. Eur Radiol 22:923–929

    Article  PubMed  Google Scholar 

  27. Arens AM, Barr B, Puchalski SM, Poppenga R, Kulin RM et al (2011) Osteoporosis associated with pulmonary silicosis in an equine bone fragility syndrome. Vet Pathol 48:593–615

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y, Yu L, Ao M, Jin W (2006) Effect of ethanol extract of Lepidium meyenii Walp. on osteoporosis in ovariectomized rat. J Ethnopharmacol 105:274–279

    Article  PubMed  Google Scholar 

  29. Scholz-Ahrens KE, Delling G, Stampa B, Helfenstein A, Hahne HJ et al (2007) Glucocorticosteroid-induced osteoporosis in adult primiparous Gottingen miniature pigs: effects on bone mineral and mineral metabolism. Am J Physiol Endocrinol Metab 293:E385–E395

    Article  PubMed  CAS  Google Scholar 

  30. Liu X, Lei W, Wu Z, Cui Y, Han B et al (2012) Effects of glucocorticoid on BMD, micro-architecture and biomechanics of cancellous and cortical bone mass in OVX rabbits. Med Eng Phys 34:2–8

    Article  PubMed  Google Scholar 

  31. Baofeng L, Zhi Y, Bei C, Guolin M, Qingshui Y et al (2010) Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocorticoid. Acta Orthop 81:396–401

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schorlemmer S, Ignatius A, Claes L, Augat P (2005) Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone 37:491–496

    Article  PubMed  CAS  Google Scholar 

  33. Akhter MP, Cullen DM, Gong G, Recker RR (2001) Bone biomechanical properties in prostaglandin EP1 and EP2 knockout mice. Bone 29:121–125

    Article  PubMed  CAS  Google Scholar 

  34. Chen H, Wu M, Kubo KY (2012) Combined treatment with a traditional Chinese medicine, Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) and alendronate improves bone microstructure in ovariectomized rats. J Ethnopharmacol 142:80–85

    Article  PubMed  Google Scholar 

  35. Hordon LD, Itoda M, Shore PA, Shore RC, Heald M et al (2006) Preservation of thoracic spine microarchitecture by alendronate: comparison of histology and microCT. Bone 38:444–449

    Article  PubMed  CAS  Google Scholar 

  36. Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44:372–379

    Article  PubMed  Google Scholar 

  37. Li L, Zeng Z, Cai G (2011) Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1. Phytomedicine 18:985–989

    Article  PubMed  CAS  Google Scholar 

  38. Chen PY, Sun JS, Tsuang YH, Chen MH, Weng PW et al (2010) Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr Res 30:191–199

    Article  PubMed  CAS  Google Scholar 

  39. Ho ML, Chen YH, Liao HJ, Chen CH, Hung SH et al (2009) Simvastatin increases osteoblasts and osteogenic proteins in ovariectomized rats. Eur J Clin Invest 39:296–303

    Article  PubMed  CAS  Google Scholar 

  40. Oxlund H, Andreassen TT (2004) Simvastatin treatment partially prevents ovariectomy-induced bone loss while increasing cortical bone formation. Bone 34:609–618

    Article  PubMed  CAS  Google Scholar 

  41. Yin H, Shi ZG, Yu YS, Hu J, Wang R et al (2012) Protection against osteoporosis by statins is linked to a reduction of oxidative stress and restoration of nitricoxide formation in aged and ovariectomized rats. Eur J Pharmacol 674:200–206

    Article  PubMed  CAS  Google Scholar 

  42. Baek KH, Lee WY, Oh KW, Tae HJ, Lee JM et al (2005) The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells. J Korean Med Sci 20:438–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hwang R, Lee EJ, Kim MH, Li SZ, Jin YJ et al (2004) Calcyclin, a Ca2+ ion-binding protein, contributes to the anabolic effects of simvastatinon bone. J Biol Chem 279:21239–21247

    Article  PubMed  CAS  Google Scholar 

  44. Maeda T, Matsunuma A, Kawane T, Horiuchi N (2001) Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1cells. Biochem Biophys Res Commun 280:874–877

    Article  PubMed  CAS  Google Scholar 

  45. von Stechow D, Fish S, Yahalom D, Bab I, Chorev M et al (2003) Does simvastatin stimulate bone formation in vivo? BMC Musculoskelet Disord 4:8

    Article  Google Scholar 

  46. Yazawa H, Zimmermann B, Asami Y, Bernimoulin JP (2005) Simvastatin promotes cell metabolism, proliferation, and osteoblastic differentiation in human periodontal ligament cells. J Periodontol 76:295–302

    Article  PubMed  CAS  Google Scholar 

  47. Chuang SC, Liao HJ, Li CJ, Wang GJ, Chang JK et al (2013) Simvastatin enhances human osteoblast proliferation involved in mitochondrial energy generation. Eur J Pharmacol 714:74–82

    Article  PubMed  CAS  Google Scholar 

  48. Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT (2006) BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res 21:637–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lee MH, Kim YJ, Kim HJ, Park HD, Kang AR et al (2003) BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278:34387–34394

    Article  PubMed  CAS  Google Scholar 

  50. Kim T, Ha H, Shim KS, Cho WK, Ma JY (2013) The anti-osteoporotic effect of Yijung-tang in an ovariectomized rat model mediated by inhibition of osteoclast differentiation. J Ethnopharmacol 146:83–89

    Article  PubMed  CAS  Google Scholar 

  51. Maeda T, Matsunuma A, Kurahashi I, Yanagawa T, Yoshida H et al (2004) Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells. J Cell Biochem 92:458–471

    Article  PubMed  CAS  Google Scholar 

  52. Liu XY, Zhang SS, Lu XM, Zheng SN, Li FM et al (2012) Metabonomic study on the anti-osteoporosis effect of Rhizoma Drynariae and its action mechanism using ultra-performance liquid chromatography-tandem mass spectrometry. J Ethnopharmacol 139:311–317

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant 81060361), the Natural Science Foundation of Yunnan Province, China (grants 2012FA002, 2010ZC169, 2012HB043), the Department of Education, Yunnan province, China (grant ZD2012006), and the Natural Science Foundation of Kunming City, China (grants 10S090202, 2012-01-01-A-R-07-0006, 2014-05-06-A-R-07-0005).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbin Zhao or Min Hu.

Additional information

L. Dai, M. Xu, and H. Wu contributed equally to this work.

M. Hu is the senior corresponding author of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3043 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Xu, M., Wu, H. et al. The functional mechanism of simvastatin in experimental osteoporosis. J Bone Miner Metab 34, 23–32 (2016). https://doi.org/10.1007/s00774-014-0638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0638-y

Keywords

Navigation