Skip to main content

Advertisement

Log in

Current, new and future treatments of osteoporosis

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Osteoporosis as a common chronic disease is challenging human health. Although different therapeutic options are routinely used for prevention/treatment of osteoporosis, their side effects and benefits are under question. Increasing our knowledge about signaling pathways in bone and osteocytes as well as osteoblasts and osteoclasts will help us in designing new therapeutic modalities for osteoporosis. In the present study, all new therapeutic measures of osteoporosis have been reviewed. For this purpose, search engines like Pubmed, Web of Science, Scopus, Google Scholar were searched and all relevant articles were found. The study was limited to the year 1998–2010. Bisphosphonates are the cornerstone of osteoporosis treatment, but there are not enough relevant studies that investigated their equivalencies in comparison with each other or the other medications. Therefore, medication selection is empirical and subjective. Furthermore, no eminent study has compared certain combinations. There are new hopes for treatment of osteoporosis, which are more specific with less harm. Our results show that new and emerging therapies are more potent and target specified which more individualize osteoporosis treatment; however, more investigations on their safety and efficacy in comparison with current medications are highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nanes MS, Kallen CB (2009) Clinical assessment of fracture risk and novel therapeutic strategies to combat osteoporosis. Fertil Steril 92(2):403–412

    Article  CAS  PubMed  Google Scholar 

  2. Salari P, Rezaie A, Larijani B, Abdollahi M (2008) A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit 14(3):RA37–RA44

    CAS  PubMed  Google Scholar 

  3. Gallagher JC, Sai AJ (2010) Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis. Maturitas 65:301–307

    Article  CAS  PubMed  Google Scholar 

  4. Abdollahi M, Larijani B, Rahimi R, Salari P (2005) Role of oxidative stress in osteoporosis. Therapy 2(5):787–796

    Article  CAS  Google Scholar 

  5. Yousefzadeh G, Larijani B, Mohammadirad A et al (2006) Determination of oxidative stress status and concentration of TGF-β1 in the blood and saliva of osteoporotic subjects. Ann New York Acad Sci 1091:142–150

    Article  CAS  Google Scholar 

  6. Salari P, Asalforoush M, Ameri F, Larijani B, Abdollahi M (2010) The effect of n-3 fatty acids on bone biomarkers in Iranian postmenopausal osteoporotic women: a randomized clinical trial. Age 32(2):179–186

    Google Scholar 

  7. Salari P, Abdollahi M (2009) Controversial effects of non-steroidal anti-inflammatory drugs on bone: a review. Inflamm Allergy Drug Targets 8(3):169–175

    CAS  PubMed  Google Scholar 

  8. Salari P, Abdollahi M (2008) Association of hyperhomocysteinemia with osteoporosis: a systematic review. Therapy 5(2):215–222

    Article  Google Scholar 

  9. Bischoff-Ferrari HA, Rees JR, Grau MV, Barry E, Gui J, Baron JA (2008) Effect of calcium supplementation on fracture risk: a double-blind randomized controlled trial. Am J Clin Nutr 87:1945–1951

    CAS  PubMed  Google Scholar 

  10. Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Eng J Med 354:669–683

    Article  CAS  Google Scholar 

  11. Porthouse J, Cockayne S, King C et al (2005) Randomised controlled trial of calcium, supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 330:1003

    Article  CAS  PubMed  Google Scholar 

  12. Dawson-Hughes B, Dallal GE, Krall EA, Sadwski L, Sahyoun N, Tannenbaum S (1990) A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Eng J Med 323:878–883

    Article  CAS  Google Scholar 

  13. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666

    Article  CAS  PubMed  Google Scholar 

  14. Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral efficacy with risedronate therapy (VERT) study group. JAMA 282:1344–1352

    Article  CAS  PubMed  Google Scholar 

  15. Bone HG, Hosking D, Devogelaer JP et al (2004) Ten years experience with alendronate for osteoporosis in postmenopausal women. N Eng J Med 350:1189–1199

    Article  CAS  Google Scholar 

  16. Wells G, Cranney A, Peterson J et al (2008) Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev 1:CD004523

    PubMed  Google Scholar 

  17. Borah B, Dufresne TE, Chmielewski PA et al (2004) Risedronate preserves bone architecture in ostmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 34:736–746

    Article  CAS  PubMed  Google Scholar 

  18. Black DM, Schwartz AV, Ensrud KE et al (2006) Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 296:2927–2938

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz AV, Bauer DC, Cauley JA et al (2007) Efficacy of continued alendronate for fractures in women without prevalent vertebral fracture: the FLEX Trial. J Bone Miner Res 22(Suppl 1):S1057

    Google Scholar 

  20. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD (2003) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 18:1051–1056

    Article  CAS  PubMed  Google Scholar 

  21. Chenut CH III, Skag A, Christiansen C et al (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19:1241–1249

    Article  CAS  Google Scholar 

  22. Cramer JA, Gold DT, Silverman SL, Lewiecki EM (2007) A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos Int 18:1023–1031

    Article  CAS  PubMed  Google Scholar 

  23. Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S (2003) Bisphosphonate-induced osteoporosis. N Eng J Med 349:457–463

    Article  CAS  Google Scholar 

  24. Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Eng J Med 356:1809–1822

    Article  CAS  Google Scholar 

  25. Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) HORIZON recurrent fracture trial: zoledronic acid in reducing clinical fracture and mortality after hip fracture. N Eng J Med 357:1799–1809

    Article  CAS  Google Scholar 

  26. Zoledronic acid prescribing information. Available at http://www.pharma.us.novartis.com/products/pi/pdf/reclast.pdf

  27. Ljunghall S, Gärdsell P, Johnell O et al (1991) Synthetic human calcitonin in postmenopausal osteoporosis: a placebo-controlled, double-blind study. Calcif Tissue Int 49:17–19

    Article  CAS  PubMed  Google Scholar 

  28. Thamsborg G, Storm TL, Sykulski R, Brinch E, Nielsen HK, Sorensen OH (1991) Effect of different doses of nasal calcitonin on bone mass. Calcif Tissue Int 48:302–307

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen NM, von der Recke P, Hansen MA, Overgaard K, Christiansen C (1994) Estimation of the effect of salmon calcitonin in established osteoporosis by biochemical bone markers. Calcif Tissue Int 55:8–11

    Article  CAS  PubMed  Google Scholar 

  30. Silverman SL, Chesnut C, Andriano K et al (1998) Salmon calcitonin nasal spray (NS-CT) reduces risk of vertebral fracture(s) (VF) in established osteoporosis and has continuous efficacy with prolonged treatment: accrued 5 year worldwide data of the PROOF Study. J Bone Miner Res 23(Suppl 5):S174

    Google Scholar 

  31. Misof BM, Roschger P, Cosman F et al (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    Article  CAS  PubMed  Google Scholar 

  32. Reginster JY, Taquet AN, Fraikin G, Gosset C, Zegels B (1997) Parathyroid hormone in the treatment of involutional osteoporosis: back to the future. Osteoporos Int 7(Suppl 3):S163–S168

    Article  PubMed  Google Scholar 

  33. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. New Eng J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  34. Body JJ, Gaich GA, Scheele WH et al (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87:4528–4535

    Article  CAS  PubMed  Google Scholar 

  35. Hodson AB, Bauer DC, Dempster DW et al (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703

    Article  CAS  Google Scholar 

  36. Greenspan SL, Bone HG, Ettinger MP et al (2007) Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis. Ann Intern Med 146:326–339

    PubMed  Google Scholar 

  37. Antoniucci DM, Sellmeyer DE, Bilezikian JP et al (2007) Elevations in serum and urinary calcium with parathyroid hormone (1–84) with and without alendronate for osteoporosis. J Clin Endocrinol Metab 92:942–947

    Article  CAS  PubMed  Google Scholar 

  38. Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Womens Health Initiative randomized Controlled Trial. JAMA 288:321–333

    Article  CAS  PubMed  Google Scholar 

  39. Kleerekoper M (2006) Osteoporosis prevention and therapy: preserving and building strength through bone quality. Osteoporos Int 17:1707–1715

    Article  CAS  PubMed  Google Scholar 

  40. Harada N, Utsumi T, Takagi Y (1993) Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc Natl Acad Sci USA 90:11312–11316

    Article  CAS  PubMed  Google Scholar 

  41. Riggs BL, Melton LJ III (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 17:11–14

    Article  PubMed  Google Scholar 

  42. Sarkar S, Mitlak BH, Wong M, Black DM, Harper KD (2002) Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 17:1–10

    Article  CAS  PubMed  Google Scholar 

  43. Delmas PD, Ensrud KE, Adachi JD et al (2002) Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab 87:3609–3617

    Article  CAS  PubMed  Google Scholar 

  44. Barrett-Connor E, Mosca L, Collins P et al (2006) Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Eng J Med 355:125–137

    Article  CAS  Google Scholar 

  45. Martino S, Cauley JA, Barrett-Connor E et al (2004) Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 96:1751–1761

    Article  CAS  PubMed  Google Scholar 

  46. Epstein S (2006) Update of current therapeutic options for the treatment of postmenopausal osteoporosis. Clin Therapeut 28:151–173

    Article  CAS  Google Scholar 

  47. Hirata M, Inada M, Matsumoto C et al (2009) A novel carborane analog, BE360, with a carbon-containing polyhedral boron-cluster is a new selective estrogen receptor modulator for bone. Biochem Biophys Res Commun 380:218–222

    Article  CAS  PubMed  Google Scholar 

  48. Silverman ChristiansenC, Genant HK et al (2008) Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo, and active-controlled clinical trial. J Bone Miner Res 23:1923–1934

    Article  CAS  PubMed  Google Scholar 

  49. Cummings SR, Eastell R, Ensrud K et al (2008) The effects of lasofoxifene on fractures, breast cancer: 3-year results from the PEARL trial. J Bone Miner Res 1288:S81

    Google Scholar 

  50. Ronkin S, Clarke L, Boudes P et al (2001) TSE-424, a novel tissue selective estrogen, reduce biochemical indices of bone metabolism in a dose related fashion. J Bone Miner Res 16(S1):S413

    Google Scholar 

  51. Ling X, Jianli L, Jingfang L et al (2003) Effects of bazedoxifene (TSE-424), a novel tissue selective estrogen receptor modulator (SERM), on biochemical markers of bone metabolism in a Chinese population. Osteoporos Int 14:S97–S98

    Google Scholar 

  52. Miller PD, Chines AA, Christiansen C et al (2008) Effects of bazedoxifene on BMD and bone turnover in postmenopausal women: 2-year results of a randomized, double-blind, placebo, and active-controlled study. J Bone Miner Res 23:525–535

    Article  CAS  PubMed  Google Scholar 

  53. Pinkerton JV, Archer DF, Utian WH et al (2009) Bazedoxifene effects on the reproductive tract in postmenopausal women at risk for osteoporosis. Menopause 16(6):1102–1108

    Article  PubMed  Google Scholar 

  54. Smith SY, Minck D, Jolette J et al (2005) Bazedoxifene prevents ovariectomy-induced bone loss in the cynomolgus monkey. J Bone Miner Res 20(S1):S174

    Google Scholar 

  55. Ke HZ, Foley GL, Simmons HA, Shen V, Thompson DD (2004) Long-term treatment of lasofoxifene preserves bone mass and bone strength and does not adversely affect the uterus in ovariectomized rats. Endocrinology 145:1996–2005

    Article  CAS  PubMed  Google Scholar 

  56. Wang XN, Simmons HA, Salatto CT, Cosgrove PG, Thompson DD (2006) Lasofoxifene enhances vaginal mucus formation without causing hypertrophy and increases estrogen receptor beta and androgen receptor in rats. Menopause 13:609–620

    Article  PubMed  Google Scholar 

  57. McClung MR, Siris E, Cummings S et al (2006) Prevention of bone loss in postmenopausal women treated with lasofoxofene compared with raloxifene. Menopause 13:377–386

    Article  PubMed  Google Scholar 

  58. Cummings SR, Eastell R, Ensrud K et al (2008) The effects of lasofoxifene on fractures, breast cancer: 3-year results from the PEARL Trial. J Bone Miner Res 23:81

    Google Scholar 

  59. Qu Q, Zheng H, Dahllund J et al (2000) Selective estrogenic effects of a novel triphenylethylene compound, FC1271a, on bone, cholesterol level, and reproductive tissues in intact and ovariectomized rats. Endocrinology 141:809–820

    Article  CAS  PubMed  Google Scholar 

  60. Komi J, Heikkinen J, Rutanen EM, Halonen K, Lammintausta R, Ylikorkala O (2004) Effects of ospemifene, a novel SERM, on biochemical markers of bone turnover in healthy postmenopausal women. Gynecol Endocrinol 18:152–158

    Article  CAS  PubMed  Google Scholar 

  61. Komi J, Lankinen KS, DeGregorio M et al (2006) Effects of ospemifene and raloxifene on biochemical markers of bone turnover in postmenopausal women. J Bone Miner Metab 24:314–318

    Article  CAS  PubMed  Google Scholar 

  62. Deshmane V, Krishnamurthy S, Melemed AS, Peterson P, Buzdar AU (2007) Phase III double-blind trial of arzoxifene compared with tamoxifene for locally advanced or metastatic breast cancer. J Clin Oncol 25:4967–4973

    Article  CAS  PubMed  Google Scholar 

  63. Sato M, Turner CH, Wang T, Adrian MD, Rowley E, Bryant HU (1998) LY353381.HCI: a novel raloxifene analog with improved SERM potency and efficacy in vivo. J Pharmacol Exp Ther 287:1–7

    CAS  PubMed  Google Scholar 

  64. Ma YL, Bryant HU, Zeng Q et al (2002) Long-term dosing of arzoxifene lowers cholesterol, reduces bone turnover, and preserves bone quality in ovariectomized rats. J Bone Miner Res 17:2256–2264

    Article  CAS  PubMed  Google Scholar 

  65. Stolina M, Kostenuik PJ, Dougall WC, Fitzpatrick LA, Zack DJ (2007) RANKL inhibition: from mice to men (and women). Adv Exp Med Biol 602:143–150

    Article  PubMed  Google Scholar 

  66. Kearns AE, Khosla S, Kostenuik PJ (2007) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    Article  PubMed  CAS  Google Scholar 

  67. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Google Scholar 

  68. Lewiecki EM, Miller PD, McClung MR et al (2007) Two-year treatment with densumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res 22:1832–1841

    Article  CAS  PubMed  Google Scholar 

  69. Miller PD, Bolognese MA, Lewieki EM et al (2008) Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43:222–229

    Article  CAS  PubMed  Google Scholar 

  70. Brown JP, Prince RL, Deal C et al (2009) Comparison of the effect of denosumab and alendronate on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 24:153–161

    Article  CAS  PubMed  Google Scholar 

  71. Cummings S, Zanchetta J, McClung M et al (2009) The effects of twice-yearly denosumab on fracture risk in women with osteoporosis. Osteoporos Int 20:516

    Article  Google Scholar 

  72. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Eng J Med 354:821–831

    Article  CAS  Google Scholar 

  73. Cummings S, San Martin J, McClung M et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Eng J Med 361:756–765

    Article  CAS  Google Scholar 

  74. Ellis GK, Bone HG, Chlebowski R et al (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26:4875–4882

    Article  CAS  PubMed  Google Scholar 

  75. Smith MR, Egerdie B, Toriz NH et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Eng J Med 361(8):745–755

    Article  CAS  Google Scholar 

  76. O’Donnell S, Cranney A, Wells GA et al (2006) Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database Syst Rev 18:CD005326

    Google Scholar 

  77. Seeman E, Devogelaer J, Lorenc R et al (2008) Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. J Bone Miner Res 23:433–438

    Article  CAS  PubMed  Google Scholar 

  78. Blake GM, Fogelman I (2007) The correction of BMD measurements for bone strontium content. J Clin Densitometr 10:259–265

    Article  Google Scholar 

  79. Bonnelye E, Chabadel A, Saltel F et al (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    Article  CAS  PubMed  Google Scholar 

  80. Zhu LL, Zaidi S, Peng Y et al (2007) Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun 355:307–311

    Article  CAS  PubMed  Google Scholar 

  81. Chattopadhyay N, Quinn SJ, Kifor O et al (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate induced osteoblast proliferation. Biochem Pharmacol 74:438–447

    Article  CAS  PubMed  Google Scholar 

  82. Ammann P, Badoud I, Barraud S et al (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic boe tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425

    Article  CAS  PubMed  Google Scholar 

  83. Choudhary S, Halbout P, Alander C et al (2007) Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins. J Bone Miner Res 22:1002–1010

    Article  CAS  PubMed  Google Scholar 

  84. Bruyere O, Roux C, Detilleux J et al (2007) Relationship between bone mineral density changes and fracture risk reduction in patients treated with strontium ranelate. J Clin Endocrinol Metab 92:3076–3081

    Article  CAS  PubMed  Google Scholar 

  85. Roux C, Reginster JY, Fechtenbaum J et al (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21:536–542

    Article  CAS  PubMed  Google Scholar 

  86. Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    Article  CAS  PubMed  Google Scholar 

  87. Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. New Eng J Med 350:459–468

    Article  CAS  PubMed  Google Scholar 

  88. Meunier PJ, Slosman DO, Delmas PD et al (2002) Strontium ranelate: dosedependent effects in established postmenopausal vertebral osteoporosis—a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 87:2060–2066

    Article  CAS  PubMed  Google Scholar 

  89. Reginster JY, Deroisy R, Dougados M et al (2002) Prevention of early postmenopausal bone loss by strontium ranelate: the randomized, two-year, doublemasked, dose-ranging, placebo-controlled PREVOS trial. Osteoporos Int 13:925–931

    Article  CAS  PubMed  Google Scholar 

  90. Seeman E, Vellas B, Benhamou C et al (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21:1113–1120

    Article  CAS  PubMed  Google Scholar 

  91. http://www.emea.europa.eu/humandocs/PDFs/EPAR/Protelos/PressRelease_Protelos_41745807en.pdf

  92. Shahnazari M, Yao W, Corr M, Lane NE (2008) Targeting the Wnt signaling pathway to augment bone formation. Curr Osteoporos Rep 6:142–148

    Article  PubMed  Google Scholar 

  93. Robling AG, Bellido T, Turner CH (2006) Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact 6:354

    CAS  PubMed  Google Scholar 

  94. Robling AG, Niziolek PJ, Baldridge LA et al (2007) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  PubMed  CAS  Google Scholar 

  95. Sutherland MK, Geoghegan JC, Yu C et al (2004) Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 35:828–835

    Article  CAS  PubMed  Google Scholar 

  96. Winkler DG, Yu C, Geoghegan JC et al (2004) Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex. J Biol Chem 279:36293–36298

    Article  CAS  PubMed  Google Scholar 

  97. Leupin O, Kramer I, Collette NM et al (2007) Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res 22:1957–1967

    Article  CAS  PubMed  Google Scholar 

  98. Silvestrini G, Ballanti P, Sebastiani M et al (2008) OPG and RANKL mRNA and protein expressions in the primary and secondary metaphyseal trabecular bone of PTH-treated rats are independent of that of SOST. J Mol Histol 39:237–242

    Article  CAS  PubMed  Google Scholar 

  99. Van Bezooijen RL, Papapoulos SE, Löwik CW (2005) Bone morphogenetic proteins and their antagonists: the sclerostin paradigm. J Endocrinol Invest 28(8 Suppl):15–17

    PubMed  Google Scholar 

  100. Li X, Ominsky MS, Niu QT et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869

    Article  PubMed  Google Scholar 

  101. Tian X, Setterberg RB, Li X, Paszty C, Ke HZ, Jee WS (2010) Treatment with a sclerostin antibody increases cancellous bone formation and bone mass regardless of marrow composition in adult female rats. Bone; PMID: 20561907

  102. Ominsky MS, Vlasseros F, Jolette J et al (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density and bone strength. J Bone Miner Res 25(5):948–959

    Article  CAS  PubMed  Google Scholar 

  103. Li X, Ominsky MS, Warmington KS, Morony S et al (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588

    Article  CAS  PubMed  Google Scholar 

  104. Lane NE, Silverman SL (2010) Anabolic therapies. Curr Osteoporos Rep 8:23–27

    Article  PubMed  Google Scholar 

  105. Yadav VK, Ryu JH, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837

    Article  CAS  PubMed  Google Scholar 

  106. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    Article  CAS  PubMed  Google Scholar 

  107. Kiviranta R, Morko J, Uusitalo H, Aro HT, Vuorio E, Rantakokko J (2001) Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res 16:1444–1452

    Article  CAS  PubMed  Google Scholar 

  108. Kiviranta R, Morko J, Alatalo SL et al (2005) Impaired bone resorption in cathepsin K deficient mice is partially compensated by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Bone 36:159–172

    Article  CAS  PubMed  Google Scholar 

  109. Morko J, Kiviranta R, Hurme S, Rantakokko J, Vuorio E (2005) Differential turnover of cortical and trabecular bone in transgenic mice overexpressing cathepsin K. Bone 36:854–865

    Article  CAS  PubMed  Google Scholar 

  110. Rantakokko J, Uusitalo H, Jamsa T, Tuukkanen J, Aro HT, Vuorio E (1999) Expression profiles of mRNAs for osteoblast and osteoclast proteins as indicators of bone loss in mouse immobilization osteopenia model. J Bone Miner Res 14:1934–1942

    Article  CAS  PubMed  Google Scholar 

  111. Holzer G, Noske H, Lang T, Holzer L, Willinger U (2005) Soluble cathepsin K: a novel marker for the prediction of nontraumatic fractures? J Lab Clin Med 146:13–17

    Article  CAS  PubMed  Google Scholar 

  112. Fuller K, Lawrence KM, Ross JL et al (2008) Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone 42:200–211

    Article  CAS  PubMed  Google Scholar 

  113. Gauthier JY, Chauret N, Cromlish W et al (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18(3):923–928

    Article  CAS  PubMed  Google Scholar 

  114. Adami S, Supronik J, Hala T et al (2006) Effect of one year treatment with the cathepsin-k inhibitor, balicatib, on bone mineral density (BMD) in postmenopausal women with osteoporosis/osteopenia. J Bone Miner Res 21:S24

    Article  Google Scholar 

  115. Bone HG, McClung MR, Roux C et al (2010) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two year study in postmenopausal women with low bone density. J Bone Miner Res 25(5):937–947

    PubMed  Google Scholar 

  116. Stoch SA, Zajic S, Stone J et al (2009) Effect of cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy ostmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther 86(2):175–182

    Article  CAS  PubMed  Google Scholar 

  117. Millest AJ, Breen SA, Loveday BE et al (1997) Effects of an inhibitor of cathepsin l on bone resorption in thyroparathyroidectomized and ovariectomized rats. Bone 20:465–471

    Article  CAS  PubMed  Google Scholar 

  118. Potts W, Bowyer J, Jones H et al (2004) Cathepsin l deficient mice exhibit abnormal skin and bone development and show increased resistance to osteoporosis following ovariectomy. Int J Exp Pathol 85:85–96

    Article  CAS  PubMed  Google Scholar 

  119. Delaisse JM, Engsig MT, Everts V et al (2000) Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta 291:223–234

    Article  CAS  PubMed  Google Scholar 

  120. Fernandes JC, Martel-Pelletier J, Pelletier JP (2002) The role of cytokines in osteoarthritis pathology. Biorheology 39:237–246

    CAS  PubMed  Google Scholar 

  121. Bhasin S, Jasuja R (2009) Selective androgen receptor modulators as function promoting therapies. Curr Opin Clin Nutr Metab Care 12:232–240

    Article  CAS  PubMed  Google Scholar 

  122. Gao W, Reiser PJ, Coss CC et al (2005) Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats. Endocrinol 146:4887–4897

    Article  CAS  Google Scholar 

  123. Kearbey JD, Gao W, Narayanan R et al (2007) Selective androgen receptor modulator (SARM) treatment prevents bone loss and reduces body fat in ovariectomized rats. Pharm Res 24:328–335

    Article  CAS  PubMed  Google Scholar 

  124. Mousa SA (2008) Cell adhesion molecules: potential therapeutic and diagnostic implications. Mol Biotechnol 38:33–40

    Article  CAS  PubMed  Google Scholar 

  125. Brooks PC, Montgomery AMP, Rosenfield M et al (1994) Integrin xvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  CAS  PubMed  Google Scholar 

  126. Horton MA (1997) The αvβ3 integrins “vitronectin receptor”. Int J Biochem Cell Biol 29:721–725

    Article  CAS  PubMed  Google Scholar 

  127. Nakamura I, Duong LT, Rodan SB, Rodan G (2007) Involvement of αvβ3 integrins in osteoclast function. J Bone Miner Metab 25:337–344

    Article  CAS  PubMed  Google Scholar 

  128. Murphy MG, Cerchio K, Stoch SA et al (2005) Effect of l-000845704, an alphavbeta3, integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab 90:2022–2028

    Article  CAS  PubMed  Google Scholar 

  129. Colucci S, Mori G, Vaira S et al (2005) l-carnitine and isovaleryl l-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro. Calcif Tissue Int 76:458–465

    Article  CAS  PubMed  Google Scholar 

  130. Patano N, Mancini L, Settanni MP et al (2008) l-carnitine fumarate and isovaleryl-l-carnitine fumarate accelerate the recovery of bone volume/total volume ratio after experimentally induced osteoporosis in pregnant mice. Calcif Tissue Int 82:221–228

    Article  CAS  PubMed  Google Scholar 

  131. Cornish J, Reid IR (2001) Effects of amylin and adrenomedullin on the skeleton. J Musculoskel Neuron Interact 2:15–24

    CAS  Google Scholar 

  132. Cornish J, Callon KE, Cooper GJS, Reid IR (1995) Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun 207:133–139

    Article  CAS  PubMed  Google Scholar 

  133. Cornish J, Callon KE, King AR, Cooper GJS, Reid IR (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Ame J Physiol-Endocrinol Metab 38:E694–E699

    Google Scholar 

  134. Cornish J, Callon KE, Coy DH et al (1997) Adrenomedullin is a potent stimulator of osteoblastic activity in vitro and in vivo. Am J Physiol-Endocrinol Metab 273:E1113–E1120

    CAS  Google Scholar 

  135. Cornish J, Callon KE, Bava U et al (2001) Systemic administration of adrenomedullin (27–52) increases bone volume and strength in male mice. J Endocrinol 170:251–257

    Article  CAS  PubMed  Google Scholar 

  136. Naot D, Callon KE, Cooper GJS, Reid IR, Cornish J (2001) A potential role for adrenomedullin as a local regulator of bone growth. Endocrinol 142:1849–1857

    Article  CAS  Google Scholar 

  137. Montuenga LM, Martinez A, Miller MJ, Unsworth EJ, Cuttitta F (1997) Expression of adrenomedullin and its receptor during embryogenesis suggests autocrine or paracrine modes of action. Endocrinol 138:440–451

    Article  CAS  Google Scholar 

  138. Bronsky J, Průsa R (2004) Amylin fasting plasma levels are decreased in patients with osteoporosis. Osteoporos Int 15(3):243–247

    Article  CAS  PubMed  Google Scholar 

  139. Uzan B, Villemin A, Garel JM, Cressent M (2008) Adrenomodulin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway. J Cell Physiol 215(1):122–128

    Article  CAS  PubMed  Google Scholar 

  140. Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19:55–79

    Article  CAS  PubMed  Google Scholar 

  141. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I) and type 1 IGF receptor (IGF1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  142. Bikle D, Majumdar S, Laib A et al (2001) The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res 16:2320–2329

    Article  CAS  PubMed  Google Scholar 

  143. Fowlkes JL, Thrailkill KM, Liu L et al (2006) Effects of systemic and local administration of recombinant human IGF-I (rjIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res 21:1359–1366

    Article  CAS  PubMed  Google Scholar 

  144. Kanazawa I, Yamaguchi T, Sugimoto T (2010) Serum insulin-like growth factor-I is a marker for assessing the severity of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int. doi:10.1007/s00198-010-1310-6 [Epub ahead of print]

  145. Hamrick MW, McNeil PL, Patterson SL (2010) Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact 10(1):64–70

    CAS  PubMed  Google Scholar 

  146. Woo JT, Kawatani M, Kato M et al (2006) Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. Proc Natl Acad Sci USA 103:4729–4734

    Article  CAS  PubMed  Google Scholar 

  147. Woo JT, Yonezawa T, Cha BY, Teruya T, Nagai K (2008) Pharmacological topics of bone metabolism: antiresorptive microbial compounds that inhibit osteoclast differentiation function and survival. J Pharmacol Sci 106:547–554

    Article  CAS  PubMed  Google Scholar 

  148. Muguruma H, Yano S, Kakiuchi S et al (2005) Reveromycin A inhibits osteolytic bone metastasis of small-cell lung cancer cells, SBC-5, through an antiosteoclastic activity. Clin Cancer Res 11(24):8822–8828

    Article  CAS  PubMed  Google Scholar 

  149. Clines GA (2010) Prospects for osteoprogenitor stem cells in fracture repair and osteoporosis. Curr Opin Organ Transplant 15:73–78

    Article  PubMed  Google Scholar 

  150. Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bne marrow stromal cells. N Eng J Med 344:385–386

    Article  CAS  Google Scholar 

  151. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogenic bone marrow derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfect: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  CAS  PubMed  Google Scholar 

  152. Tang Y, Tang W, Lin Y et al (2008) Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int 32:1150–1157

    Article  CAS  PubMed  Google Scholar 

  153. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooneh Salari Sharif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salari Sharif, P., Abdollahi, M. & Larijani, B. Current, new and future treatments of osteoporosis. Rheumatol Int 31, 289–300 (2011). https://doi.org/10.1007/s00296-010-1586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1586-z

Keywords

Navigation