Skip to main content

Advertisement

Log in

Cortisol enhances citrulline synthesis from proline in enterocytes of suckling piglets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

There are marked decreases in plasma concentrations of cortisol and arginine (an essential amino acid for neonates) as well as intestinal citrulline synthesis in piglets during the first 14 days of life. The objective of this study was to test the hypothesis that increasing plasma cortisol concentrations by cortisol administration may prevent the decline in intestinal citrulline and arginine synthesis from proline, thereby possibly increasing plasma arginine concentration in suckling piglets and their growth. Seven-day-old pigs reared by sows received daily intramuscular injections of hydrocortisone 21-acetate (25 mg/kg) or vehicle solution (saline) (n = 10/group). At 14 days of age, piglets were used to prepare jejunal enterocytes. Cells were incubated at 37 °C for 30 min in oxygenated Krebs buffer containing 5 mM glucose, 2 mM [U-14C]proline, and 2 mM glutamine. Cortisol treatment increased plasma cortisol concentration, mitochondrial proline oxidase and N-acetylglutamate synthase activities, cytosolic argininosuccinate lyase activity, and the intracellular concentrations of N-acetylglutamate and carbamoyl phosphate for citrulline and arginine synthesis. However, cortisol treatment induced the expression of intestinal arginase-II for arginine hydrolysis, resulting in no change in plasma arginine concentration. Administration of cortisol had no effect on milk consumption or the whole-body growth rate of piglets, but increased villus height in the jejunum and ileum. Collectively, these results suggest an important role for proline oxidase and N-acetylglutamate in regulating citrulline and arginine synthesis from proline in pig enterocytes. Because proline catabolism plays an important role in modulating protein synthesis, cell proliferation, and arginine production, our findings may have important implications for understanding the role of proline oxidase in the growth and health of the mammalian small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASL:

Argininosuccinate lyase

ASS:

Argininosuccinate synthase

BSA:

Bovine serum albumin

DTT:

Dithiothreitol

HPLC:

High-performance liquid chromatography

KHB:

Krebs–Henseleit bicarbonate

NAG:

N-acetylglutamate

OAT:

Ornithine aminotransferase

OCT:

Ornithine carbamoyltransferase

P5C:

1-Pyrroline-5-carboxylate

References

  • Alonso E, Rubio V (1985) Determination of N-acetyl-L-glutamate using high-performance liquid chromatography. Anal Biochem 146:252–259

    Article  CAS  PubMed  Google Scholar 

  • Beaumont M, Blachier F (2020) Amino acids in intestinal physiology and health. Adv Exp Med Biol 1265:1–20

    Article  CAS  PubMed  Google Scholar 

  • Brunton JA, Bertolo RF, Pencharz PB, Ball RO (1999) Proline ameliorates arginine deficiency during enteral but not parenteral feeding in neonatal piglets. Am J Physiol 277:E223–E231

    CAS  PubMed  Google Scholar 

  • Burrin DG, Reeds PJ (1997) Alternative fuels in the gastrointestinal tract. Curr Opin Gastroenterol 13:165–170

    Article  Google Scholar 

  • Burrin DG, Wester TJ, Davis TA, Florotto ML, Chang X (1998) Dexamethasone inhibits small intestinal growth via increased protein catabolism in neonatal pigs. Am J Physiol 276:E269-277

    Google Scholar 

  • Chapple RP, Cuaron JA, Easter RA (1989) Temporal changes in carbohydrate digestive capacity and growth rate of piglets in response to glucocorticoid administration and weaning age. J Anim Sci 67:2985–2995

    Article  CAS  PubMed  Google Scholar 

  • D’Aniello C, Patriarca EJ, Phang JM, Minchiotti G (2020) Proline metabolism in tumor growth and metastatic progression. Front Oncol 10:776

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis PK, Wu G (1998) Compartimentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp Biochem Physiol 119:527–537

    Article  CAS  Google Scholar 

  • Davis TA, Nguyen HV, Garcia-Bravo R, Fiorotto ML, Jackson EM, Lewis DS, Lee DR, Reeds PJ (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Dillon EL, Knabe DL, Wu G (1999) Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. Am J Physiol 276:G1079-1086

    CAS  PubMed  Google Scholar 

  • Durante W (2020) Amino acids in circulatory function and health. Adv Exp Med Biol 1265:39–56

    Article  CAS  PubMed  Google Scholar 

  • Flynn NE, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol 271:R1149-1155

    CAS  PubMed  Google Scholar 

  • Flynn NE, Wu G (1997a) Enhanced metabolism of arginine and glutamine in enterocytes of cortisol-treated pigs. Am J Physiol 272:G474-480

    CAS  PubMed  Google Scholar 

  • Flynn NE, Wu G (1997b) Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs. J Nutr 127:732–737

    Article  CAS  PubMed  Google Scholar 

  • Fry CS, Nayeem SZ, Dillon EL, Sarkar PS, Tumurbaatar B, Urban RJ, Wright TJ, Sheffield-Moore M, Tilton RG, Choudhary S (2016) Glucocorticoids increase skeletal muscle NF-κB inducing kinase (NIK): links to muscle atrophy. Physiol Rep 4:e13014

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez GV, Smith VA, Melnyk M, Burd MA, Sprayberry KA, Edwards MS, Peterson DG, Bennet DC, Fanter RK, Columbus DA, Steibel JP, Glanz H, Immoos C, Rice MS, Santiago-Rodriguez TM, Blank J, VanderKelen JJ, Kitts CL, Piccolo BD, La Frano MR, Burrin DG, Maj M, Manjarin R (2020) Dysregulated FXR-FGF19 signaling and choline metabolism are associated with gut dysbiosis and hyperplasia in a novel pig model of pediatric NASH. Am J Physiol 318:G582–G609

    Google Scholar 

  • Hoskinson CD, Chew BP, Wong TS (1990) Age-related changes in mitogen-induced lymphocyte proliferation and polymorphonuclear neutrophil function in the piglet. J Anim Sci 68:2471–2478

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Kirkden RD, Broom DM, Andersen IL (2013) Piglet mortality: management solutions. J Anim Sci 91:3361–3389

    Article  CAS  PubMed  Google Scholar 

  • Kowaloff EM, Granger AS, Phang JM (1977) Glucocorticoid control of hepatic proline oxidase. Metabolism 26:893–901

    Article  CAS  PubMed  Google Scholar 

  • Kowaloff EM, Phang JM, Granger AS, Downing SJ (1978) Glucocorticoid induction of proline oxidase in LLC-RK1 cells. J Cell Physiol 97:153–160

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Garcia TP, Carroll RJ, Gilbreath KR, Wu G (2019) Analysis of repeated measures data in nutrition research. Front Biosci 24:1378–1390

    CAS  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  CAS  PubMed  Google Scholar 

  • Pan SY, Morrison H (2011) Epidemiology of cancer of the small intestine. World J Gastrointest Oncol 3:33–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Phang JM (2019) Proline metabolism in cell regulation and cancer biology: recent advances and hypotheses. Antioxid Redox Signal 30:635–649

    Article  CAS  PubMed  Google Scholar 

  • Phang JM, Liu W (2012) Proline metabolism and cancer. Front Biosci 17:1835–1845

    Article  CAS  Google Scholar 

  • Phang JM, Yeh GC, Scriver CR (1995) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 1, 7th edn. McGraw-Hill Inc, pp 1125–1146

    Google Scholar 

  • Pufall MA (2015) Glucocorticoids and cancer. Adv Exp Med Biol 872:315–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren WK, Bin P, Yin YL, Wu G (2020) Impacts of amino acids on the intestinal defensive system. Adv Exp Med Biol 1265:133–151

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R (2015) Nutritional and regulatory roles for branched-chain amino acids in milk production by lactating sows. PhD Dissertation. Texas A&M University, College Station, Texas, USA

    Google Scholar 

  • Sangild PT, Sjostrom H, Noren O, Fowden AL, Silver M (1995) The prenatal development and glucocorticoid control of brush-border hydrolases in the pig small intestine. Pediatr Res 37:207–212

    Article  CAS  PubMed  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill

    Google Scholar 

  • Urban RJ, Dillon EL, Choudhary S, Zhao Y, Horstman AM, Tilton RG, Sheffield-Moore M (2014) Translational studies in older men using testosterone to treat sarcopenia. Trans Am Clin Climatol Assoc 125:27–42

    PubMed  PubMed Central  Google Scholar 

  • Vandewalle J, Luypaert A, De Bosscher K, Libert C (2018) Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab 29:42–54

    Article  CAS  PubMed  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol 272:G1382–G1390

    CAS  PubMed  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press

    Google Scholar 

  • Wu G (2021) Amino acids: biochemistry and nutrition, 2nd edn. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol 269:R621-629

    CAS  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Flynn NE, Yan W, Flynn SP (1996a) Arginine degradation in developing porcine enterocytes. Am J Physiol 271:G913–G919

    CAS  PubMed  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996b) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol 279:E395-402

    CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S-S2390

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou Y (2018) Arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM (2021) Role of L-arginine in nitric oxide synthesis and health in humans. Adv Exp Med Biol 1332:167–188

    Article  PubMed  Google Scholar 

  • Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IA (2002) The role of nitric oxide in cancer. Cell Res 12:311–320

    Article  PubMed  Google Scholar 

  • Yamada E, Wakabayashi Y (1991) Development of pyrroline-5-carboxylate synthase and N-acetylglutamate synthase and their changes in lactation and aging. Arch Biochem Biophys 291:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Texas A&M AgriLife Research (H-8200). We thank research assistants and students in our laboratory for technical assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This study was approved by the Institutional Animal Care and Use Committee of Texas A&M University.

Informed consent

No informed consent is required for this study.

Additional information

Communicated by J. M. Phang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dillon, E.L., Wu, G. Cortisol enhances citrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids 53, 1957–1966 (2021). https://doi.org/10.1007/s00726-021-03039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-021-03039-y

Keywords

Navigation