Skip to main content

Amino Acids in Circulatory Function and Health

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1265))

Abstract

Cardiovascular disease is the major cause of global mortality and disability. Abundant evidence indicates that amino acids play a fundamental role in cardiovascular physiology and pathology. Decades of research established the importance of L-arginine in promoting vascular health through the generation of the gas nitric oxide. More recently, L-glutamine, L-tryptophan, and L-cysteine have also been shown to modulate vascular function via the formation of a myriad of metabolites, including a number of gases (ammonia, carbon monoxide, hydrogen sulfide, and sulfur dioxide). These amino acids and their metabolites preserve vascular homeostasis by regulating critical cellular processes including proliferation, migration, differentiation, apoptosis, contractility, and senescence. Furthermore, they exert potent anti-inflammatory and antioxidant effects in the circulation, and block the accumulation of lipids within the arterial wall. They also mitigate known risk factors for cardiovascular disease, including hypertension, hyperlipidemia, obesity, and diabetes. However, in some instances, the metabolism of these amino acids through discrete pathways yields compounds that fosters vascular disease. While supplementation with amino acid monotherapy targeting the deficiency has ameliorated arterial disease in many animal models, this approach has been less successful in the clinic. A more robust approach combining amino acidĀ supplementation with antioxidants, anti-inflammatory agents, and/or specific amino acid enzymatic pathway inhibitors may prove more successful. Alternatively, supplementation with amino acid-derived metabolites rather than the parent molecule may elicit beneficial effects while bypassing potentially harmful pathways of metabolism. Finally, there is an emerging recognition that circulating levels of multiple amino acids are perturbed in vascular disease and that a more holistic approach that targets all these amino acid derangements is required to restore circulatory function in diseased blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addabbo F, Chen Q, Patel DP, Rabadi M, Ratliff B, Zhang F et al (2013) Glutamine supplementation alleviates vasculopathy and corrects metabolic profile in an in vivo model of endothelial cell dysfunction. PLoS One 8:e65458

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Allerton TD, Proctor DN, Stephens JM, Dugas TR, Spielman G, Irving BA (2018) L-Citrulline supplementation: impact on cardiometabolic health. Nutrients 10:921

    PubMed CentralĀ  Google ScholarĀ 

  • Annavarajula SK, Dakshinamurty KV, Naidu MUR, Reddy CP (2012) The effect of L-arginine on arterial stiffness and oxidative stress in chronic kidney disease. Indian J Nephrol 22:340ā€“346

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Atzler D, Schƶnhoff M, Cordts K, Ortland I, Hoppe J, Hummel FC et al (2016) Oral supplementation with L-homoarginine in young volunteers. Br J Clin Pharmacol 82:1477ā€“1485

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Au Yeung SL, Lin SL, Lam HS, Schooling CM (2016) Effect of L-arginine, asymmetric dimethylarginine, and symmetric dimethylarginine on ischemic heart disease risk: a Mendelian randomization study. Am Heart J 182:54ā€“61

    PubMedĀ  Google ScholarĀ 

  • Barth MC, Ahluwalia N, Anderson TJ, Hardy GJ, Sinha S, Alvarez-Cordona JA et al (2009) Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J Biol Chem 284:19189ā€“19195

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics-2017 update. Circulation 135:e146ā€“e603

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bertero T, Oldham WM, Cottrill KA, Pisano S, Vanderpool RR, Yu Q et al (2016) Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J Clin Invest 126:3313ā€“3335

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Blum A, Hathaway L, Mincemoyer R, Schenke WH, Kirby M, Csako G et al (2000) Oral L-arginine in patients with coronary artery disease on medical management. Circulation 101:2160ā€“2164

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Boger RH, Bode-Boger SM, Brandes RP, Phivthong-ngam L, Bohme M, Nafe R et al (2007) Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation 96:1282ā€“1290

    Google ScholarĀ 

  • Caldwell WR, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB (2018) Arginase: a multifaceted enzyme important in health and disease. Physiol Rev 98:641ā€“665

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Casas JP, Buatista LE, Humphries SE, Hingorani AD (2004) Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects. Circulation 109:1359ā€“1364

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Castejon AM, Hoffmann IS, Jimenez E, Cubeddu RJ, Baldonedo RM, Cubeddu LX (2002) Differential blood pressure effects of oral glucose and intravenous L-arginine in healthy lean normotensive and obese hypertensive subjects. J Hum Hypert 16 (S1):S133-S136

    Google ScholarĀ 

  • Chavez-Tostado M, Carrill-Llamas F, Martinez-Gutierrez PE, Alvarado-Ramirez A, Lopez-Taylor JG, Vasquez-Jiminez JC et al (2017) Oral glutamine reduces myocardial damage after coronary revascularization under cardiopulmonary bypass. A random clinical trial. Nutr Hosp 34:277ā€“283

    PubMedĀ  Google ScholarĀ 

  • Chen J, Kuhlencordt PJ, Astern J, Gyurko R, Huang PL (2001) Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice. Circulation 104:2391ā€“2394

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D et al (2012) Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125:2222ā€“2231

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Choe CU, Atzler D, Wild PS, Carter AM, Boger RH, Ojeda F et al (2013) Homoarginine levels are regulated by L-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 128:1451ā€“1461

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cole JE, Astola N, Cribbs AP, Goddard ME, Park I, Green P et al (2015) Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc Natl Acad Sci USA 112:13033ā€“13038

    Google ScholarĀ 

  • Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME (1992) Antiatherogenic effects of L-arginine in the hypercholestrolemic rabbit. J Clin Invest 90:1168ā€“1172

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Durante W (2001) Regulation of L-arginine transport and metabolism in vascular smooth muscle cells. Cell Biochem Biophys 35:19ā€“34

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Durante W (2011) Protective role of heme oxygenase-1 against inflammation in atherosclerosis. Front Biosci 16:2372ā€“2388

    CASĀ  Google ScholarĀ 

  • Durante W (2013) Role of arginase in vessel wall remodeling. Front Immunol 4:111

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Durante W, Liao L, Peyton KJ, Schafer AI (1998) Thrombin stimulates vascular smooth muscle cell polyamine synthesis by inducing cationic amino acid transporter and ornithine decarboxylase activity. Circ Res 83:217ā€“223

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI (2000) Physiologic cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle cells. FASEB J 14:1775ā€“1783

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI (2001) Transforming growth factor-Ī²1 stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 103:1121ā€“1127

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Durante W, Johnson FK, Johnson RA (2006) Role of carbon monoxide in cardiovascular function. J Cell Mol Med 10:672ā€“686

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 34:906ā€“911

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Emdin CA, Khera AV, Klarin D, Natarajan P, Zekavat SM, Nomura A et al (2018) Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 137:222ā€“232

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y et al (2011) Requirement of arginosuccinate lyase for systemic nitric oxide production. Nat Med 17:1619ā€“1626

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ford A, Al-Magableh M, Gaspari TA, Hart JL (2013) Chronic NaHS treatment is vasoprotective in high fat-fed ApoE(āˆ’/āˆ’) mice. Int J Vasc Med 2013:915983

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Forstermann U, Sessa WC (2012) Nitric oxide synthase: regulation and function. Eur Heart J 33:72ā€“80

    Google ScholarĀ 

  • Ganz T, Wainstein J, Gilad S, Limor R, Boaz M, Stern N (2017) Serum asymmetric dimethylarginine and arginine levels predict microvascular and macrovascular complications in type 2 diabetes mellitus. Diabetes Metab Res Rev 33:e2836

    Google ScholarĀ 

  • Gao L, Xu Z, Yin Z, Chen K, Wang C, Zhang H (2015) Association of hydrogen sulfide with alterations of monocyte chemokine receptors, CCR2 and CX3CR1 in patients with coronary artery disease. Inflamm Res 64:627ā€“635

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ge J, Cui H, Xie N, Banerjee S, Guo S, Dubey S et al (2018) Glutaminolysis promotes collagen translation and stability via Ī±-ketoglutarate-mediated mTOR activation and proline hydroxylation. Am J Respir Cell Mol Biol 58:378ā€“390

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gomez I, Ozen G, Deschildre C, Amgoud Y, Boubaya L, Gorenne I et al (2016) Reverse regulatory pathway (H2S/PGE2/MMP) in human aortic aneurysm and saphenous vein varicosity. PLoS One 11:e0158421

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hamon M, Vallet B, Bauters C, Wernert N, McFadden EP, Lablanche JM et al (1994) Long-term oral administration of L-arginine reduces intimal thickening and enhances neoendothelium-dependent acetylcholine-induced relaxation after arterial injury. Circulation 90:1357ā€“1362

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hinshaw DB, Burger JM (1990) Protective effect of glutamine on endothelial cell ATP in oxidant injury. J Surg Res 49:222ā€“227

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hsu CS, Chou SY, Liang SJ, Chang CY, Yeh SL (2006) Effect of physiological levels of glutamine on ICAM-1 expression in endothelial cells activated by preeclamptic plasma. J Reprod Med 51:193ā€“198

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Huang Y, Tang C, Du J, Jin H (2016) Endogenous sulfur dioxide: a new member of the gasotransmitter family in the cardiovascular system. Oxidative Med Cell Longev 2016:8961951

    Google ScholarĀ 

  • Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Bruning U et al (2017) Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 36:2334ā€“2352

    Google ScholarĀ 

  • Ismailova A, Kuter D, Bohle DS, Butler IS (2018) An overview of the potential therapeutic applications of CO-releasing molecules. Bioinorg Chem Appl 2018:8547364

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ito S, Komatsu K, Tsukamoto K, Sved AF (2000) Excitatory amino acids in the rostral ventrolateral medualla support blood pressure in spontaneously hypertensive rats. Hypertension 35:413ā€“417

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S et al (2010) Low levels of hydrogen sulfide in the blood of diabetic patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal 12:1333ā€“1337

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jin HF, Du SX, Zhao X, Wei HL, Wang YF, Liang YF et al (2008) Effects of endogenous sulfur dioxide on monocrotaline-induced pulmonary hypertension in rats. Acta Pharmacol Sin 29:1157ā€“1166

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Johnson FK, Peyton KJ, Liu XM, Azam MA, Shebib AR, Johnson RA et al (2015) Arginase promotes endothelial dysfunction and hypertension in obese rats. Obesity 23:445ā€“452

    Google ScholarĀ 

  • Kamata K, Suguira M, Kojima S, Kasuyu Y (1996) Restoration of endothelium-dependent relaxation in both hypercholesterolemia and diabetes by chronic taurine. Eur J Pharmacol 303:47ā€“53

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kanagy NL, Szabo C, Papapetropoulos A (2017) Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol 312:C537ā€“C549

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Khogali SE, Pringle SD, Weryk BV, Rennie MJ (2002) Is glutamine beneficial in ischemic heart disease? Nutrition 18:123ā€“126

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim B, Li J, Jang C, Arany Z (2017) Glutamine fuels proliferation but not migration of endothelial cells. EMBO J 36:2321ā€“2333

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Korthuis RJ, Durante W (2005) Heme oxygenase-1: a pluripotent sentinel limiting the systemic inflammatory response to extremity ischemia and reperfusion. Crit Care Med 33:2701ā€“2703

    PubMedĀ  Google ScholarĀ 

  • Li H, Meininger CJ, Kelly JR Jr, Morris SM Jr, Wu G (2002) Activities of arginase I and II are limiting for endothelial cell proliferation. Am J Physiol Regul Integr Comp Physiol 282:R64ā€“R69

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Li W, Tang C, Jin H, Du J (2011) Regulatory effects of sulfur dioxide on the development of atherosclerotic lesions and vascular hydrogen sulfide in atherosclerotic rats. Atherosclerosis 215:323ā€“330

    Google ScholarĀ 

  • Li H, Meininger CJ, Bazer FW, WuĀ G (2016) Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Amino Acids 48:2401ā€“2410

    Google ScholarĀ 

  • Li Z, Polhemus DJ, Lefer DJ (2018) Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ Res 123:590ā€“600

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Libby P (2008) The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med 263:517ā€“527

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lin Y, Chen Y, Zhu N, Zhao S, Fan J, Liu E (2016) Hydrogen sulfide inhibits the development of atherosclerosis through up-regulating protein S-nitrosylation. Biomed Pharmacother 83:466ā€“476

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu Z, Han Y, Li L, Lu H, Meng G, Li X et al (2013) The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(āˆ’/āˆ’) mice. Br J Pharmacol 169:1795ā€“1809

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Liu XM, Peyton KJ, Durante W (2017) Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic Biol Med 102:37ā€“46

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu X, Xu X, Shang R, Chen Y (2018) Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide 78:113ā€“120

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lomivorotov VV, Efremov SM, Shmirev VA, Ponomarev DN, Lomivorotov VN, Karaskov AM (2011) Glutamine is cardioprotective in patients with ischemic heart disease following cardiopulmonary bypass. Heart Surg Forum 14:E384ā€“E388

    PubMedĀ  Google ScholarĀ 

  • Ma W, Heianza Y, Huang T, Wang T, Sun D, Zheng Y et al (2018) Dietary glutamine, glutamate, and mortality: two large prospective studies in US men and women. Int J Epidemiol 47:311ā€“320

    PubMedĀ  Google ScholarĀ 

  • Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG et al (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523ā€“2534

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Marz W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME et al (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967ā€“975

    PubMedĀ  Google ScholarĀ 

  • McNamara DB, Bedi B, Aurora H, Tena L, Ignarro LJ, Kadowitz PJ, Akers DL (1993) L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem Biophys Res Commun 193:291ā€“296

    CASĀ  PubMedĀ  Google ScholarĀ 

  • McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G (2018) Safety of dietary supplementation with arginine in adult humans. Amino Acids 50:1215ā€“1229

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Meng G, Zhao S, Xie L, Han Y, Ji Y (2018) Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 175:1146ā€“1156

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Metghalchi S, Ponnuswamy P, Simon T, Haddad Y, Laurans L, Clement M et al (2015) Indoleamine 2,3-dioxygenase fine-tunes immune homeostasis in atherosclerosis and colitis through repression of interleukin-10 production. Cell Metab 22:460ā€“471

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A et al (2018) Indoleamine 2,3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS One 13:e0193737

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ming XF, Rajapakse AG, Yepuri G, Xiong Y, Carvas JM, Reffieux J et al (2012) Arginase II promotes macrophage inflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. J Am Heart Assoc 1:e000992

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Morita M, Hayashi T, Ochiai M, Maeda M, Yamaguchi T, Ina K et al (2014) Oral supplementation with combination of L-citrulline and L-arginine rapidly increases plasma L-arginine concentration and enhances NO bioavailability. Biochem Biophys Res Commun 454:53ā€“57

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V et al (2005) Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA 294:81ā€“90

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Murakami S, Kondo Y, Sakurai T, Kitajima H, Nagate T (2002) Taurine suppresses development of atherosclerosis in Watanabe heritable syndrome hyperlipidemic (WHHL) rabbits. Atherosclerosis 163:79ā€“87

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Murakami S, Sakurai T, Toda Y, Sakono M, Fukuda N (2010) Prevention of neointima formation by taurine ingestion after carotid balloon injury. Vasc Pharmacol 53:177ā€“184

    CASĀ  Google ScholarĀ 

  • Murphy C, Newsholme P (1998) Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production. Clin Sci 95:397ā€“407

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311ā€“326

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Niinisalo P, Raitala M, Pertovaara M, Oja SS, Lehtimaki T, Kahonen M et al (2008) Indoleamine 2,3-dioxygenase activity associates with cardiovascular risk factors: the health 2000 study. Scand J Clin Lab Invest 68:767ā€“770

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Niinisalo P, Oksala N, Levula M, Pelto-Huikko M, Jarvinen O, Salenius JP et al (2010) Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. Ann Med 42:55ā€“63

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ochiai M, Hayashi T, Morita M, Ina K, Maeda M, Watanabe F et al (2012) Short-term effects of L-citrulline supplementation on arterial stiffness in middle-aged men. Int J Cardiol 155:257ā€“261

    PubMedĀ  Google ScholarĀ 

  • Okazaki J, Komori K, Kawasaki K, Eguchi D, Ishida M, Sugimachi K (1997) L-arginine inhibits smooth muscle cell proliferation of vein graft intimal thickness in hypercholestrolemic rabbits. Cardiovasc Res 36:429ā€“436

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pedersen ER, Tuseth N, Eussen SJ, Ueland PM, Strand E, Svingen GF et al (2015) Association of plasma kynurenines with risk of myocardial infarction in patients with stable angina. Arterioscler Thromb Vasc Biol 35:455ā€“462

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pernow J, Jung C (2013) Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res 98:334ā€“343

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pertovaara M, Raitala A, Juonola M, Lehtimaki T, Huhtala H, Oja SS et al (2007) Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: the Cardiovascular Risk in Young Finns Study. Clin Exp Immunol 148:106ā€“111

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Peyton KJ, Liu XM, Shebib AR, Johnson FK, Johnson RA, Durante W (2018a) Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 50:747ā€“754

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Peyton KJ, Liu XM, Yu Y, Yates B, Behnammanesh G, Durante W (2018b) Glutaminase-1 stimulates the proliferation, migration, and survival of human endothelial cells. Biochem Pharmacol 156:204ā€“214

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pieper GM, Peltier BA (1995) Amelioration by L-arginine of a dysfunctional arginine/nitric oxide pathway in diabetic endothelium. J Cardiovasc Pharmacol 25:397ā€“403

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pilz S, Meinitzer A, Tomaschitz A, Drechsler C, Ritz E, Krane V et al (2011) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97:1222ā€“1227

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Polyzos KA, Ovchinnikova O, Berg M, Baumgartner R, Agardh H, Pirault J et al (2015) Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoeāˆ’/āˆ’ mice. Cardiovasc Res 106:295ā€“302

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rodriques-Krause J, Krause M, da Rocha IMG, Umpierre D, Fayh APT (2019) Association of L-arginine supplementation with markers of endothelial dysfunction in patients with cardiovascular or metabolic disorders: a systemic review and meta-analysis. Nutrients 11:15

    Google ScholarĀ 

  • Romero JR, Suzuka SM, Nagel RL, Fabry ME (2002) Arginine supplementation of sickle transgenic mice reduces blood cell density and Gardos channel activity. Blood 99:1103ā€“1108

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ryoo S, Gupta G, Benjo A, Lim HK, Camara A, Sikkha G et al (2008) Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res 102:923ā€“932

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Scalera F, Closs EI, Flick E, Martens-Lobenhoffer J, Boissel JP, Lendeckel U et al (2009) Paradoxical effect of L-arginine: acceleration of endothelial cell senescence. Biochem Biophys Res Commun 386:650ā€“655

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S et al (2006) L-arginine therapy in acute myocardial infarction: the Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA 295:58ā€“64

    Google ScholarĀ 

  • Schwedhelm E, Maas R, Freese R, Jung D, Lukas Z, Jumbrecina A et al (2008) Pharmacokinetic and pharmacodynamics properties of oral L-citrulline and L-arginine: impact of nitric oxide metabolism. Br J Clin Pharmacol 65:51ā€“59

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sessa WC, Hecker M, Mitchell JA, Vane JR (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor. Proc Natl Acad Sci USA 87:8607ā€“8611

    Google ScholarĀ 

  • Sufit A, Weitzel LB, Hamiel C, Queensland K, Dauber I, Rooyackers O et al (2012) Pharmacologically dosed oral glutamine reduces myocardial injury in patients undergoing cardiac surgery: a randomized pilot feasibility trial. Enteral Nutr 36:556ā€“561

    CASĀ  Google ScholarĀ 

  • Sun Y, Tian Y, Prabha M, Liu D, Chen S, Zhang R et al (2010) Effects of sulfur dioxide on hypoxic pulmonary vascular structural remodeling. Lab Invest 90:68ā€“82

    Google ScholarĀ 

  • Tabas I, Garcia-Cardena G, Owens GK (2015) Recent insight into the cellular biology of atherosclerosis. J Cell Biol 209:13ā€“22

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tang WHW, Wang Z, Cho L, Brennan DM, Hazen SL (2009) Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk. J Am Coll Cardiol 53:2061ā€“2067

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Teupser D, Burkhardt R, Wilfert W, Haffner I, Nebandahl K, Thiery J (2006) Identification of macrophage arginase I as a new candidate gene of atherosclerosis resistance. Arterioscl Thromb Vasc Biol 26:365ā€“371

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ulrich-Merzenich G, Zeitler H, Vetter H, Bhonde RR (2007) Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. Eur J Nutr 46:431ā€“438

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Unterluggauer H, Mazurek B, Lener E, Hutter E, Eigenbrodt W, Zwersche W et al (2008) Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerentology 9:247ā€“259

    CASĀ  Google ScholarĀ 

  • Vaisman BL, Andrews KL, Khong SML, Wood KC, Moore XL, Fu Y et al (2012) Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice. PLoS One 7:e39487

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M et al (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16:279ā€“285

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang XP, Chen YG, Qin WD, Zhang W, Wei SJ, Wang J et al (2011a) Arginase I attenuates inflammatory cytokine secretion induced by lipopolysaccharide in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31:1853ā€“1860

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang XB, Huang XM, Ochs T, Li XY, Jin HF, Tang CS et al (2011b) Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injury by inducing endoplasmic reticulum stress. Basic Res Cardiol 106:865ā€“878

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang Q, Zhang M, Ding Y, Wang Q, Zhang W, Song P et al (2014) Activation of NAD(P)H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo. Circ Res 114:480ā€“492

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang ZJ, Wu J, Guo W, Zhu YZ (2017) Atherosclerosis and the hydrogen sulfide signaling pathway: therapeutic approaches to disease prevention. Cell Physiol Biochem 42:859ā€“875

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP (2007) L-arginine supplementation in peripheral artery disease: no benefit and possible harm. Circulation 116:188ā€“195

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A et al (2003) Immune activation and degradation of tryptophan in coronary heart disease. Eur J Clin Invest 33:550ā€“554

    Google ScholarĀ 

  • Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626ā€“2629

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu G, Morris SM Jr (1988) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1ā€“17

    Google ScholarĀ 

  • Wu G, Haynes TE, Li H, Yan W, Meininger CJ (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J 353:245ā€“252

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM et al (2009) Arginine metabolism and nutrition in growth, health, and disease. Amino Acids 37:153ā€“168

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu D, Wang J, Li H, Xue M, Ji A, Li Y (2015) Role of hydrogen sulfide in ischemia-reperfusion injury. Oxidative Med Cell Longev 2015:186908

    Google ScholarĀ 

  • Wu Z, Hou Y, Hu S, Bazer FW, Meininger CJ, McNeal CJ et al (2016) Catabolism and safety of supplemental L-arginine in animals. Amino Acids 48:1541ā€“1552

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wurtz P, Makinen VP, Soininen P, Kangas AJ, Turkiainen T, Kettunen J et al (2012) Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61:1372ā€“1380

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Xi P, Jiang Z, Zheng C, Lin Y, Wu G (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci 16:578ā€“597

    CASĀ  Google ScholarĀ 

  • Xiao Y, Christou H, Liu L, Visner G, Mitsialis SA, Kouremabana S et al (2013) Endothelial indoleamine 2,3-dioxygenase protects against development of pulmonary hypertension. Am J Respir Crit Care Med 188:482ā€“491

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Xiong Y, Yu Y, Montani JP, Yang Z, Ming XF (2013) Arginase II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its L-arginine ureahydrolase activity: implications for atherosclerotic plaque vulnerability. J Am Heart Assoc 2:e000096

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yamori Y, Liu L, Ikeda K, Miura A, Mizushima S, Miki T et al (2001) Distribution of twenty-four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC study. Hypertens Res 24:453ā€“457

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang Y, Wu ZL, Jia SC, Dahanayaka S, Feng S, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with L-arginine in rats. Amino Acids 47:1907ā€“1920

    Google ScholarĀ 

  • Yin J, Ren W, Yang G, Duan J, Huang X, Fang R et al (2016) L-cysteine metabolism and its nutritional implications. Mol Nutr Food Res 60:134ā€“146

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yun TJ, Lee JS, Machmach K, Shim D, Choi J, Wi YJ et al (2016) Indoleamine 2,3-dioxygenase-expressing aortic plasmacytoid dendritic cells protect against atherosclerosis by induction of regulatory T cells. Cell Metab 23:852ā€“866

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang L, Ovchinnikova O, Jonsson A, Lundberg AM, Berg M, Hansson GK et al (2012a) The tryptophan metabolite 3-hydroxy-anthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolemic mice. Eur Heart J 33:2025ā€“2034

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang H, Guo C, Wu D, Zhang A, Gu T, Wang L et al (2012b) Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS One 7:e41147

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zheng Y, Hu FB, Ruiz-Canela M, Clish CB, Dennis C, Salas-Salvado J et al (2016) Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PREvencion con DIeta MEDiterranea (PREDIMED) trial. J Am Heart Assoc 5:e003755

    Google ScholarĀ 

  • Zuidema MY, Peyton KJ, Fay WP, Durante W, Korthuis RJ (2011) Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine: role of heme oxygenase-1. Am J Physiol Heart Circ Physiol 301:H888ā€“H894

    Google ScholarĀ 

Download references

Acknowledgements

This work was supported by American Heart Association grant #17IRG33370074 and American Diabetes Association grant #1-17-IBS-290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Durante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durante, W. (2020). Amino Acids in Circulatory Function and Health. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1265. Springer, Cham. https://doi.org/10.1007/978-3-030-45328-2_3

Download citation

Publish with us

Policies and ethics