Skip to main content

L-Arginine Nutrition and Metabolism in Ruminants

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Abstract

L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25–0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acid

Arg:

L-Arginine

BW:

Body weight

Cit:

L-Citrulline

IUGR:

Intrauterine growth restriction

MTOR:

Mechanistic target of rapamycin

NAG:

N-Acetylglutamate

NCG:

N-Carbamoylglutamate

NO:

Nitric oxide

NRC:

National Research Council

RPA:

Rumen-protected arginine product

References

  • Albuquerque KT, Sardinha FLC, Telles MM, Watanabe RLH, Nascimento CMO, Tavares do Carmo MG, Ribeiro EB, (2006) Intake of trans fatty acid–rich hydrogenated fat during pregnancy and lactation inhibits the hypophagic effect of central insulin in the adult offspring. Nutrition 22:820–829

    PubMed  CAS  Google Scholar 

  • Al-Rubeii AMS, Al-Badri AAHD, Taha SA (2015) Effect of protected arginine supplementation to ration of Awassi lamb on the chemical and physical analysis of carcasses meat. Anim Sci LVIII:86–93

    Google Scholar 

  • Alumot E, Bruckental I, Tadmor A, Kennit C, Holstein P (1983) Effect of proline on arginine uptake and nitrogen metabolism of lactating goats. J Dairy Sci 66:1243–1247

    PubMed  CAS  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS-Word tables for one-way ANOVA. Springerplus 3:474

    PubMed  PubMed Central  Google Scholar 

  • Ashour AM, Hussein HA, Fahmy S, Ali EM (2018) Significance of rumen protected L-arginine –supplementation on certain blood parameters, mammary gland functions and growth rate of newly born lambs. Arch Agric Sci J 1:59–67

    Google Scholar 

  • Baetz AL, Hubbert WT, Graham CK (1975) Developmental changes of free amino acids in bovine fetal fluids with gestational age and the interrelationships between the amino acid concentrations in the fluid compartments. J Reprod Fertil 44:437–444

    PubMed  CAS  Google Scholar 

  • Baharom S, De Matteo R, Ellery S, Gatta PD, Bruce CR, Kowalski GM, Hale N, Dickinson H, Harding R, Walker D, Snow RJ (2017) Does maternal-fetal transfer of creatine occur in pregnant sheep? Am J Physiol 313:E75-83

    Google Scholar 

  • Bazer FW, Wu G, Johnson GA, Kim JY, Song GW (2011) Uterine histotroph and conceptus development: Select nutrients and secreted phosphoprotein 1 affect MTOR cell signaling in ewes. Biol Reprod 85:1094–1107

    PubMed  CAS  Google Scholar 

  • Bazer FW, Song GH, Kim JY, Erikson DW, Johnson GA, Burghardt RC, Gao HJ, Satterfield MC, Spencer TE, Wu G (2012) Mechanistic mammalian target of rapamycin (MTOR) cell signaling: Effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 354:22–33

    PubMed  CAS  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2018) Mechanisms for the establishment and maintenance of pregnancy: Synergies from scientific collaborations. Biol Reprod 99:225–241

    PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Seo H, Johnson GA, Wu G (2021) One-carbon metabolism and development of the conceptus during pregnancy: Lessons from studies with sheep and pigs. Adv Exp Med Biol 1285:1–15

    PubMed  Google Scholar 

  • Bergen WG (2021) Amino acids in beef cattle nutrition and production. Adv Exp Med Biol 1285:29–42

    PubMed  Google Scholar 

  • Bergman EN, Heitmann RN (1978) Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed Proc 37:1228–1232

    PubMed  CAS  Google Scholar 

  • Bergman EN, Kaufman CF, Wolff JE, Williams HH (1974) Renal metabolism of amino acids and ammonia in fed and fasted pregnant sheep. Am J Physiol 226:833–837

    PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    PubMed  CAS  Google Scholar 

  • Cao Y, Yao J, Sun X, Liu S, Martin GB (2021) Amino acids in the nutrition and production of sheep and goats. Adv Exp Med Biol 1285:63–79

    PubMed  Google Scholar 

  • Chacher B, Liu H, Wang D, Liu J (2013) Potential role of N-carbamoyl glutamate in biosynthesis of arginine and its significance in production of ruminant animals. J Anim Sci Biotechnol 4:16

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chew BP, Eisenman JR, Tanaka TS (1984) Arginine infusion stimulates prolactin, growth hormone, insulin, and subsequent lactation in pregnant dairy cows. J Dairy Sci 67:2507–2518

    PubMed  CAS  Google Scholar 

  • Choi SH, Wickersham TA, Wu G, Gilmore LA, Edwards HD, Park SK, Kim KH, Smith SB (2014) Abomasal infusion of arginine stimulates SCD and C/EBPß gene expression, and decreases CPT1ß gene expression in bovine adipose tissue independent of conjugated linoleic acid. Amino Acids 46:353–366

    PubMed  CAS  Google Scholar 

  • Clark JH, Derrig RG, Davis CL, Spires HR (1975) Metabolism of arginine and ornithine in the cow and rabbit mammary tissue. J Dairy Sci 58:1808–1813

    PubMed  CAS  Google Scholar 

  • Clark JH, Spires HR, Davis CL (1978) Uptake and metabolism of nitrogenous components by the lactacting mammary gland. Fed Proc 37:1233–1238

    PubMed  CAS  Google Scholar 

  • Crouse MS, McLean KJ, Greseth NP, Crosswhite MR, Pereira NN, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS (2017) Maternal nutrition and stage of early pregnancy in beef heifers: Impacts on expression of glucose, fructose, and cationic amino acid transporters in utero-placental tissues. J Anim Sci 95:5563–5572

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crouse MS, Greseth NP, McLean KJ, Crosswhite MR, Pereira NN, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS (2019) Maternal nutrition and stage of early pregnancy in beef heifers: Impacts on hexose and AA concentrations in maternal and fetal fluids. J Anim Sci 97:1296–1316

    PubMed  PubMed Central  Google Scholar 

  • Crouse MS, McLean KJ, Dwamena J, Neville TL, Menezes ACB, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS (2021) The effects of maternal nutrition during the first 50 days of gestation on the location and abundance of hexose and cationic amino acid transporters in beef heifer utero-placental tissues. J Anim Sci 99:skaa386

    Google Scholar 

  • Davenport GM, Boling JA, Schillo KK (1990a) Nitrogen metabolism and somatotropin secretion in beef heifers receiving abomasal arginine infusions. J Anim Sci 68:1683–1692

    PubMed  CAS  Google Scholar 

  • Davenport GM, Boling JA, Schillo KK, Aaron DK (1990b) Nitrogen metabolism and somatotropin secretion in lambs receiving arginine and ornithine via abomasal infusion. J Anim Sci 68:222–232

    PubMed  CAS  Google Scholar 

  • Davis SR, Bickerstaffe R, Hart DS (1978) Amino acid uptake by the mammary gland of the lactating ewe. Aust J Biol Sci 31:123–132

    PubMed  CAS  Google Scholar 

  • Davis TA, Nguyen HV, Garciaa-Bravo R, Fiorotto ML, Jackson EM, Lewis DS, Lee DR, Reeds PJ (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    PubMed  CAS  Google Scholar 

  • de Chávez JAR, Guzmán A, Zamora-Gutiérrez D, Mendoza GD, Melgoza LM, Montes S, Rosales-Torres AM (2015) Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus. Trop Anim Health Prod 47:1067–1073

    PubMed  Google Scholar 

  • Dillon EL, Wu G (2021) Cortisol enhances ctrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids. https://doi.org/10.1007/s00726-021-03039-y

  • Fligger JM, Gibson CA, Sordillo LM, Baumrucker CR (1997) Arginine supplementation increases weight gain, depresses antibody production, and alters circulating leukocyte profiles in preruminant calves without affecting plasma growth hormone concentrations. J Anim Sci 75:3019–3025

    PubMed  CAS  Google Scholar 

  • Gao H (2020) Amino acids in reproductive nutrition and health. Adv Exp Med Biol 1265:111–131

    CAS  PubMed  Google Scholar 

  • Gao HJ, Wu G, Spencer TE, Johnson GA, Li XL, Bazer FW (2009a) Select nutrients in the ovine uterine lumen: I. Amino acids, glucose and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod 80:86–93

    PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE, Johnson GA, Bazer FW (2009b) Select nutrients in the ovine uterine lumen: III. Expression of cationic amino acid transporters in ovine uterus and peri-implantation conceptuses. Biol Reprod 80:602–609

    PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE, Johnson GA, Bazer FW (2009c) Select nutrients in the ovine uterine lumen: V. Nitric oxide synthase, GTP cyclohydrolase and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol Reprod 81:67–76

    PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE, Johnson GA, Bazer FW (2009d) Select nutrients in the ovine uterine lumen: VI. Expression of FK506-binding protein 12-rapamycin complex-associated protein 1 (FRAP1) and associated regulators and effectors of mTORC1 and mTORC2 complexes in ovine uteri and peri-implantation conceptuses. Biol Reprod 81:87–100

    PubMed  CAS  Google Scholar 

  • Gilbreath KR (2018) Role of a rumen-protected arginine product in improving fertility in beef cows. M.S. Thesis, Texas A&M University. College Station, TX, USA

    Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G (2018) Dietary supplementation with an arginine product between Days 1 and 60 of gestation enhances embryonic survival in lactating beef cows. J Anim Sci 96(Suppl 3):373

    PubMed Central  Google Scholar 

  • Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G (2019) Ruminal microbes of adult steers do not degrade extracellular L-citrulline and have a limited ability to metabolize extra-cellular L-glutamate. J Anim Sci 97:3611–3616

    PubMed  PubMed Central  Google Scholar 

  • Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G (2020a) Metabolic studies reveal that ruminal microbes of adult steers do not degrade rumen-protected or unprotected L-citrulline. J Anim Sci 98:skz370

    Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G (2020b) Ruminal microbes of adult sheep do not degrade extracellular L-citrulline. J Anim Sci 98:skaa164

    Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    PubMed  Google Scholar 

  • Gilmore LA, Walzem RL, Crouse SF, Smith DR, Adams TH, Vaidyanathan V, Cao X, Smith SB (2011) Consumption of high-oleic acid ground beef increases HDL-cholesterol concentration but both high- and low-oleic acid ground beef decrease HDL particle diameter in normocholesterolemic men. J Nutr 141:1188–1194

    PubMed  CAS  Google Scholar 

  • Gootwine E, Rosov A, Alon T, Stenhouse C, Halloran KM, Wu G, Bazer FW (2020) Effect of supplementation of un-protected or protected arginine to prolific ewes on maternal amino acids profile, lamb survival at birth and pre- and post-weaning lamb growth. J Anim Sci 98:skaa284

    Google Scholar 

  • Greene MA, Whitlock BK, Edwards JL, Scholljegerdes EJ, Mulliniks JT (2017) Rumen-protected arginine alters blood flow parameters and luteinizing hormone concentration in cyclic beef cows consuming toxic endophyte-infected tall fescue seed. J Anim Sci 95:1537–1544

    Google Scholar 

  • Greene MA, Klotz JL, Goodman JP, May JB, Harlow BE, Baldwin WS, Strickland JR, Britt JL, Schrick FN (2020) Duckett SK (2020) Evaluation of oral citrulline administration as a mitigation strategy for fescue toxicosis in sheep. Transl Anim Sci 4:1–16

    CAS  Google Scholar 

  • Halloran KM, Hoskins EC, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW (2021) Pre-implantation exogenous progesterone and pregnancy in sheep. II. Effects on fetal-placental development and nutrient transporters in late pregnancy. J Anim Sci Biotechnol 12:4

    Google Scholar 

  • Haque MN, Rulquin H, Lemosquet S (2013) Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine. J Dairy Sci 96:420–430

    PubMed  CAS  Google Scholar 

  • Hassan SA, Ahmed ARA, Al-Samaraae WH, Al-Badri AA (2011) Effects of rumen protected arginine supplementation on growth rate, rumen fermentation and blood biochemicals of Awassi lambs. KSU J Nat Sci 14:38–45

    Google Scholar 

  • He WL, Li P, Wu G (2021) Amino acid nutrition and metabolism in chickens. Adv Exp Med Biol 1285:109–131

    PubMed  Google Scholar 

  • Herring CM, Bazer FW, Johnson GA, Wu G (2018) Impacts of maternal dietary protein intake on fetal survival, growth and development. Exp Biol Med 243:525–533

    CAS  Google Scholar 

  • Hertelendy F, Takahashi K, Machlin LJ, Kipnis DM (1970) Growth hormone and insulin secretory responses to arginine in the sheep, pig, and cow. Gen Comp Endocrinol 14:72–77

    PubMed  CAS  Google Scholar 

  • Hill TM, Bateman HG II, Aldrich Pas JM, Schlotterbeck RL (2011) Effects of adding arginine and histidine to dairy calf milk replacers. Prof Anim Scientists 27:565–570

    Google Scholar 

  • Hoskins EC, Halloran KM, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW (2021) Pre-implantation exogenous progesterone and pregnancy in sheep: I. polyamines, nutrient transport, and progestamedins J Anim Sci Biotechnol 12:39

    Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    PubMed  CAS  Google Scholar 

  • Hu SD, Li XL, Rezaei R, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with L-arginine in pigs. Amino Acids 47:925–936

    PubMed  CAS  Google Scholar 

  • Hu SD, He WL, Wu G (2021) Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids. https://doi.org/10.1007/s00726-021-03056-x

  • Hüsier BR, Blum JW (2002) Metabolic and endocrine changes in response to endotoxin administration with or without oral arginine supplementation. J Dairy Sci 85:1927–1935

    PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    PubMed  CAS  Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC, Li P, Lee M-J, Smith SB, Spencer TE, Fried SK, Wu G (2009) Dietary L-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson KA (2018) Alternative Feeding Strategies for Growing Cattle Grazing Endophyte-Infected Tall Fescue During the Summer. Missouri State University Graduate Theses. 3258

    Google Scholar 

  • Keith AB, Satterfield MC, Bazer FW, Wu G (2018) Dietary supplementation with a rumen-protected L-arginine product enhances milk production by dairy cows. J Dairy Sci 101(Suppl 2):408

    Google Scholar 

  • Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW (2011a) Select nutrients in the ovine uterine lumen: VII. Effects of arginine, leucine, glutamine, and glucose on trophectodem cell signaling, proliferation, and migration. Biol Reprod 84:62–69

    PubMed  CAS  Google Scholar 

  • Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW (2011b) Select nutrients in the ovine uterine lumen: VIII. Arginine stimulates proliferation of ovine trophectoderm cells through mTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod 84:70–78

    PubMed  CAS  Google Scholar 

  • Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW (2011c) Select nutrients in the ovine uterine lumen: IX. Differential effects of arginine, leucine, glutamine and glucose on interferon tau, orinithine decarboxylase and nitric oxide synthase in the ovine conceptus. Biol Reprod 84:1139–1147

    PubMed  CAS  Google Scholar 

  • Kirchgessner M, ​Maierhofer R, Schwarz FJ, Eidelsburger U, (1993) Effect of feeding protected arginine on food intake, milk yield and growth hormone and amino acid levels in blood plasma of cows during the summer feeding period with grass. Arch Tierernahr 45:57–69

    PubMed  CAS  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW, Wu G (2003a) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    PubMed  CAS  Google Scholar 

  • Kwon H, Wu G, Bazer FW, Spencer TE (2003b) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634

    PubMed  CAS  Google Scholar 

  • Kwon H, Wu G, Meininger CJ, Bazer FW, Spencer TE (2004a) Developmental changes in nitric oxide synthesis in the ovine conceptus. Biol Reprod 70:679–686

    PubMed  CAS  Google Scholar 

  • Kwon H, Ford SP, Bazer FW, Spencer TE, Nathanielsz PW, Nijland MJ, Hess BW, Wu G (2004b) Maternal undernutrition reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod 71:901–908

    PubMed  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Li P, Li XL, Satterfield MC, Spencer TE, Wu G (2009) Intravenous administration of L-citrulline to pregnant ewes is more effective than L-arginine for increasing arginine availability in the fetus. J Nutr 139:660–665

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2010) Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2011) Parenteral administration of L-arginine enhances fetal survival and growth in sheep carrying multiple pregnancies. J Nutr 141:849–855

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee U, Garcia TP, Carroll RJ, Gilbreath KR, Wu G (2019) Analysis of repeated measures data in nutrition research. Front Biosci 24:1378–1390

    CAS  Google Scholar 

  • Lenis YY, Elmetwally MA, Tang WJ, Satterfield C, Dunlap K, Wu G, Bazer FW (2018) Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep. Amino Acids 50:293–308

    PubMed  CAS  Google Scholar 

  • Lewis TR, Emery RS (1962) Metabolism of amino acids in the bovine rumen. J Dairy Sci 45:1487–1492

    CAS  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    PubMed  CAS  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    PubMed  CAS  Google Scholar 

  • Li XL, Bazer FW, Johnson GA, Burghardt RC, Erikson DW, Frank JW, Spencer TE, Shinzato I, Wu G (2010) Dietary supplementation with 0.8% L-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116

    PubMed  CAS  Google Scholar 

  • Li XL, Bazer FW, Johnson GA, Burghardt RC, Frank JW, Dai ZL, Wang JJ, Wu ZL, Shinzato I, Wu G (2014) Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375–384

    PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Wu G (2021a) Nutrition and functions of amino acids in fish. Adv Exp Med Biol 1285:133–168

    PubMed  Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2021b) Nutrition and functions of amino acids in aquatic crustaceans. Adv Exp Med Biol 1285:169–198

    PubMed  Google Scholar 

  • Li P, He WL, Wu G (2021c) Composition of amino acids in foodstuffs for humans and animals. Adv Exp Med Biol 1332:189–210

    Google Scholar 

  • Liao SF, Vanzant ES, Boling JA, Matthews JC (2008) Identification and expression pattern of cationic amino acid transporter-1 mRNA in small intestinal epithelia of Angus steers at four production stages. J Anim Sci 86:620–631

    PubMed  CAS  Google Scholar 

  • Luther JS, Windorski EJ, Schauer CS, Kirsch JD, Vonnahme KA, Reynolds LP, Caton JS, Wu G (2008) Impacts of L-arginine on ovarian function and reproductive performance in ewes. J Anim Sci 86(E-Suppl 2)/ J Dairy Sci 9(E-Suppl 1): ii (Abstr LB5)

    Google Scholar 

  • Luther JS, Windorski EJ, Caton JS, Wu G, Kirsch JD, Vonnahme KA, Reynolds LP, Schauer CS (2009) Effects of arginine supplementation on reproductive performance in Rambouillet ewes. Sheep Res Report 50:11–13

    Google Scholar 

  • Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G (2017) L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49:957–964

    PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW (2007) Dietary L-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • McCoard S, Sales F, Wards N, Sciascia Q, Oliver M, Koolaard J, van der Linden D (2013) Parenteral administration of twin-bearing ewes with L-arginine enhances the birth weight and brown fat stores in sheep. Springerplus 2:684

    PubMed  PubMed Central  Google Scholar 

  • McCoardA S, Wards N, Koolaard J, Salerno MS (2014) The effect of maternal arginine supplementation on the development of the thermogenic programin the ovine fetus. Anim Prod Sci 54:1843–1847

    Google Scholar 

  • McCoard SA, Sales FZ, Sciascia QL (2016) Amino acids in sheep production. Front Biosci E8:264–288

    CAS  Google Scholar 

  • McKnight SM, Simmons RM, Wu G, Satterfield MC (2020) Maternal arginine supplementation enhances thermogenesis in the newborn lamb. J Anim Sci 98:skaa118

    Google Scholar 

  • Mepham TB (1982) Amino acid utilization by lactating mammary gland. J Dairy Sci 65:287–298

    PubMed  CAS  Google Scholar 

  • Meyer AM, Klein SI, Kapphahn M, Dhuyvetter DV, Musser RE, Caton JS (2018) Effects of rumen-protected arginine supplementation and arginine-HCl injection on site and extent of digestion and small intestinal amino acid disappearance in forage-fed steers. Transl Anim Sci 2:205–215

    PubMed  PubMed Central  CAS  Google Scholar 

  • NRC (National Research Council (2000) Nutrient Requirements of Beef Cattle. National Academy of Sciences National Research Council, Washington DC

    Google Scholar 

  • NRC (National Research Council (2001) Nutrient Requirements of Dairy Cattle, 7th, Revised. National Academy Press, Washington DC

    Google Scholar 

  • NRC (National Research Council (2007) Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington DC

    Google Scholar 

  • Palczewski MB, Petraitis H, Thomas DD (2019) Nitric oxide is an epigenetic regulator of histone post-translational modifications in cancer. Curr Opion Physiol 9:94–99

    Google Scholar 

  • Peine JL, Jia GQ, Van Emon ML, Neville TL, Kirsch JD, Hammer CJ, O’Rourke ST, Reynolds LP, Caton JS (2018) Effects of maternal nutrition and rumen-protected arginine supplementation on ewe performance and postnatal lamb growth and internal organ mass. J Anim Sci 96:3471–3481

    PubMed  PubMed Central  Google Scholar 

  • Peine JL, Neville TL, Klinkner EE, Egeland KE, Borowicz PP, Meyer AM, Reynolds LP, Caton JS (2020) Rumen-protected arginine in ewe lambs: effects on circulating serum amino acids and carotid artery hemodynamics. J Anim Sci 98:skaa196

    Google Scholar 

  • Pelaez R, Phillips DD, Walker DM (1978) Amino acid supplementation of isolated soybean protein in milk replacers for preruminant lambs. Adv Exp Med Biol 105:443–452

    PubMed  CAS  Google Scholar 

  • Pisani LP, Oller do Nascimento CM, Bueno AA, Biz C, Albuquerque KT, Ribeiro EB, Lila M Oyama LM, (2008) Hydrogenated fat diet intake during pregnancy and lactation modifies the PAI-1 gene expression in white adipose tissue of offspring in adult life. Lipids Health Dis 7:13

    PubMed  PubMed Central  Google Scholar 

  • Prezotto LD, Thorson JF, Borowicz PP, Peine JL, Bedenbaugh M, Hileman SM, Lents CA, Caton JS, Swanson KC (2018) Influences of maternal nutrient restriction and arginine supplementation on visceral metabolism and hypothalamic circuitry of offspring. Dom Anim Endocrinol 65:71–79

    CAS  Google Scholar 

  • Recabarren SE, Jofré A, Lobos A, Orellana P, Parilo J (1996) Effect of arginine and ornithine infusions on luteinizing hormone secretion in prepubertal ewes. J Anim Sci 74:162–166

    PubMed  CAS  Google Scholar 

  • Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, Luther JS, Wallace JM, Wu G, Spencer TE (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572:51–58

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, Ward AK (2019) Developmental programming of fetal growth and development. Vet Clin North Am Food Anim Pract 35:229–247

    PubMed  Google Scholar 

  • Roets E, Verbeke R, Massart-Leën A-M, Peeters G (1974) Metabolism of [14C]citrulline in the perfused sheep and goat udder. Biochem J 144:435–446

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saevre CB, Caton JS, Luther JS, Meyer AM, Dhuyvetter DV, Musser RE, Kirsch JD, Kapphahn M, Redmer DA, Schauer CS (2011) Effects of rumen-protected arginine supplementation on ewe serum-amino-acid concentration, circulating progesterone, and ovarian blood flow. Sheep Goats Res J 26:8–12

    Google Scholar 

  • Sales F, Sciascia Q, van der Linden DS, Wards NJ, Oliver MH, McCoard SA (2016) Intravenous maternal arginine administration to twin-bearing ewes, during late pregnancy, is associated with increased fetal muscle mTOR abundance and postnatal growth in twin female lambs. J Anim Sci 94:2519–2531

    PubMed  CAS  Google Scholar 

  • Sandoval C, Wu G, Smith SB, Dunlap KA, Satterfield MC (2020) Maternal nutrient restriction and skeletal muscle development: consequences for postnatal health. Adv Exp Med Biol 1265:153–165

    Google Scholar 

  • Satterfield MC, Gao HJ, Li XL, Wu G, Johnson GA, Spencer TE, Bazer FW (2010) Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration. Biol Reprod 82:224–231

    PubMed  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    PubMed  CAS  Google Scholar 

  • Satterfield MC, Edwards AK, Bazer FW, Dunlap KA, Steinhauser CB, Wu G (2021) Placental adaptation to maternal malnutrition. Reproduction 162:R73–R83

    Google Scholar 

  • Sawaya WN, Safi WJ, Al-Shalhat AF, Al-Mohammad MM (1984) Chemical composition and nutritive value of goat milk. J Dairy Sci 67:1655–1659

    CAS  Google Scholar 

  • Sciascia QL, van der Linden DS, Sales FA, Wards NJ, Blair HT, Pacheco D, Oliver MH, McCoard SA (2019) Parenteral administration of L-arginine to twin-bearing Romney ewes during late pregnancy is associated with reduced milk somatic cell count during early lactation. J Dairy Sci 102:3071–3081

    PubMed  CAS  Google Scholar 

  • Seo H, Johnson GA, Bazer FW, Wu G, McLendon BA, Kramer AC (2021) Cell-specific expression of enzymes for serine biosynthesis and glutaminolysis in farm animals. Adv Exp Med Biol 1285:17–28

    PubMed  Google Scholar 

  • Smith SB, Lunt DK, Smith DR, Walzem RL (2020) Producing high-oleic acid beef and the impact of ground beef consumption on risk factors for cardiovascular disease: A review. Meat Sci 163:108076

    Google Scholar 

  • Stalon V, Merceniner A (1984) L-Arginine utilization by Pseudomonas species. J Gen Microbiol 130:69–76

    PubMed  CAS  Google Scholar 

  • Stewart BM, Block J, Morelli P, Navarette AE, Amstalden M, Bonilla L, Hansen PJ, Bilby TR (2011) Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. J Dairy Sci 94:3437–3445

    PubMed  CAS  Google Scholar 

  • Sun L, Zhang H, Wang Z, Fan Y, Guo Y, Wang F (2018) Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod Fertil Dev 30:1116–1127

    PubMed  CAS  Google Scholar 

  • Tagari H, Bergman EN (1978) Intestinal disappearance and portal blood appearance of amino acids in sheep. J Nutr 108:790–803

    PubMed  CAS  Google Scholar 

  • Teixeira PD, Tekippe JA, Rodrigues LM, Ladeira MM, Pukrop JR, Kim YHB, Schoonmaker JP (2019) Effect of ruminally protected arginine and lysine supplementation on serum amino acids, performance and carcass traits of feedlot steers. J Anim Sci 97:3511–3522

    PubMed  PubMed Central  Google Scholar 

  • United States Department of Agriculture (USDA, 2020) Cattle Inventory. USDA National Agricultural Statistics Service. Washington, DC.

    Google Scholar 

  • van der Linden DS, Sciascia Q, Sales F, Wards NJ, Oliver MH, McCoard SA (2015) Intravenous maternal arginine addition to twin-bearing ewes during late pregnancy enhances placental growth and development. J Anim Sci 93:4917–4925

    PubMed  Google Scholar 

  • Vicini JL, Clark JH, Hurley WL, Bahr JM (1988) Effects of abomasal or intravenous administration of arginine on milk production, milk composition, and concentrations of somatotropin and insulin in plasma of dairy cows. J Dairy Sci 71:658–665

    PubMed  CAS  Google Scholar 

  • Visser WF, Verhoeven-Duif NM, de Koning TJ (2012) Identification of a human trans-3-hydroxy-l-proline dehydratase, the first characterized member of a novel family of proline racemase-like enzymes. J Biol Chem 287:21654–21662

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XQ, Frank JW, Little DR, Dunlap KA, Satterfield MC, Burghardt RC, Hansen TR, Wu G, Bazer FW (2014a) Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm. FASEB J 28:2852–2863

    PubMed  CAS  Google Scholar 

  • Wang XQ, Frank JW, Xu J, Dunlap KA, Satterfield MC, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW (2014b) Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol Reprod 91:59

    Google Scholar 

  • Wang XQ, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW (2014c) Arginine decarboxylase and agmatinase: An alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:84

    PubMed  Google Scholar 

  • Wang XQ, Johnson GA, Burghardt RC, Wu G, Bazer FW (2015a) Uterine histotroph and conceptus development. I. Cooperative effects of arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1-Akt/PKB-TSC2-MTORC1 signaling cascade. Biol Reprod 92:51

    Google Scholar 

  • Wang XQ, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW (2015b) Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 92:75

    Google Scholar 

  • Wang XQ, Johnson GA, Burghardt RC, Wu G, Bazer FW (2016) Uterine histotroph and conceptus development. II. Arginine and secreted phosphoprotein 1 cooperatively stimulate migration and adhesion of ovine trophectoderm cells via focal adhesion-MTORC2 mediated cytoskeleton reorganization. Biol Reprod 95:71

    Google Scholar 

  • Williams AP, Hewitt D (1979) The amino acid requirements of the preruminant calf. Br J Nutr 41:311–319

    PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol 272:G1382–G1390

    PubMed  CAS  Google Scholar 

  • Wu G (1998) Amino acid metabolism in the small intestine. Trends Comp Biochem Physiol 4:39–74

    CAS  Google Scholar 

  • Wu G (2018) Principles of Animal Nutrition. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G (2020) Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G (2021) Amino acids: biochemistry and nutrition, 2nd edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G (2022) Nutrition and metabolism: Foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1-24

    Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424

    PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Bazer FW, Tuo W, Flynn SP (1996) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134:2169–2172

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (2005a) Amino acid metabolism in the small intestine: biochemical bases and nutritional significance. In: Biology of Metabolism of Growing Animals (Burrin DG and Mersmann HJ eds), Elsevier, New York. pp 107–126

    Google Scholar 

  • Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE (2005b) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Google Scholar 

  • Wu G., Bazer FW, Wallace JM, Spencer TE (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, Li P, Li XL, McKnight JR, Satterfield MC, Spencer TE (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    PubMed  CAS  Google Scholar 

  • Wu Z, Hou Y, Hu S, Bazer FW, Meininger Cynthia J, McNeal Catherine J, Wu G (2016) Catabolism and safety of supplemental l-arginine in animals. Amino Acids 48:1541–1552

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou YQ (2018) Arginine nutrition and metabolism in growing, gestating and lactating swine. J Anim Sci 96:5035–5051

    PubMed  PubMed Central  Google Scholar 

  • Wu ZL, Hou YQ, Dai ZL, Hu CA, Wu G (2019) Metabolism, nutrition and redox signaling of hydroxyproline. Antioxid Redox Signal 30:674–682

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Lamb GC (2020a) Introduction: Significance, challenges and strategies of animal production. In: Lamb GC, Wu G (eds) Animal Agriculture: Challenges, Innovations, and Sustainability (Bazer FW. Elsevier, New York, pp 1–20

    Google Scholar 

  • Wu CS, Wei Q, Wang H, Kim DM, Balderas M, Wu G, Lawler J, Safe S, Guo S, Devaraj S, Chen Z, Sun Y (2020b) Protective effects of ghrelin on fasting-induced muscle atrophy in aging mice. J Gerontol A 75:621–630

    CAS  Google Scholar 

  • Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM (2021) Role of L-arginine in nitric oxide synthesis and health in humans. Adv Exp Med Biol 1332:167–188

    PubMed  Google Scholar 

  • Xue GP, Snoswell AM, Fishlock RC (1988) Quantitative study on creatine metabolism in sheep tissues. Biochem Int 16:623–628

    PubMed  CAS  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    PubMed  CAS  Google Scholar 

  • Zeitoun M, Al-Ghoneim A, Al-Sobayil K, Al-Dobaib S (2016) L-Arginine modulates maternal hormonal profiles and neonatal traits during two stages of pregnancy in sheep. Open J Anim Sci 6:95–104

    CAS  Google Scholar 

  • Zhang H, Sun LW, Wang ZY, Deng MT, Zhang GM, Guo RH, Ma TW, Wang F (2016) Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation ameliorate fetal growth restriction in undernourished ewes. J Anim Sci 94:2072–2085

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhao F, Nie H, Ma T, Wang Z, Wang F, Loor JJ (2018) Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation during intrauterine growth restriction in undernourished ewes improve fetal thymus development and immune function. Reprod Fert Dev 30:1522–1531

    CAS  Google Scholar 

  • Zhang H, Peng A, Guo S, Wang M, Loor JJ, Wang H (2019) Dietary N-carbamylglutamate and L-arginine supplementation improves intestinal energy status in intrauterine-growth-retarded suckling lambs. Food Funct 10:1903–1914

    PubMed  CAS  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Texas A&M AgriLife Research Beef Program and the Department of Animal Science Mini-Grant Program. The authors thank our research assistants (Dr. Gayan I. Nawaratna, W. David Long, Daniel Long, Neil D. Wu, and Dr. Shengdi Hu) for their technical assistance, as well as Dr. Jason J. Cleere and Dr. Tryon A. Wickersham for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, G., Bazer, F.W., Satterfield, M.C., Gilbreath, K.R., Posey, E.A., Sun, Y. (2022). L-Arginine Nutrition and Metabolism in Ruminants. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_10

Download citation

Publish with us

Policies and ethics