Skip to main content
Log in

Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Already very early, the study of microbial arginine biosynthesis and its regulation contributed significantly to the development of new ideas and concepts. Hence, the term “repression” was proposed by Vogel (The chemical basis of heredity, The John Hopkins Press, Baltimore, 1957) (in opposition to induction) to describe the relative decrease in acetylornithinase production in Escherichia coli cells upon arginine supplementation, whereas the term “regulon” was coined by Maas and Clark (J Mol Biol 8:365–370, 1964) for the ensemble of arginine biosynthetic genes dispersed over the E. coli chromosome but all subjected to regulation by the trans-acting argR gene product. Since then, unraveling of the molecular mechanisms controlling arginine biosynthesis, catabolism, and transport in and out the cell, have revealed moonlighting activities of enzymes and transcriptional regulators that generate unexpected interconnections between at first sight totally unrelated cellular processes, and have continued to replenish scientific knowledge and stimulated creative thinking. Furthermore, arginine is much more than just a common amino acid for protein synthesis. It may also be used as sole source of nitrogen by E. coli and a source of nitrogen, carbon and energy by many other bacteria. It is a substrate for the synthesis of polyamines, and important for the extreme acid resistance of E. coli. Furthermore, the guanidino group of arginine is well suited to engage in multiple interactions involving hydrogen bonds and ionic interactions with proteins and nucleic acids. Here, we combine major historical discoveries with current state of the art knowledge on arginine biosynthesis, catabolism and transport, and especially the regulation of these processes in E. coli, with reference to other microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadjieva A, Hilven P, Pauwels K, Crabeel M (2000) The yeast ARG7 gene product is autoproteolyzed to two subunit peptides, yielding active ornithine acetyltransferase. J Biol Chem 275:11361–11367

    Article  CAS  PubMed  Google Scholar 

  • Abadjieva A, Pauwels K, Hilven P, Crabeel M (2001) A new yeast metabolon involving at least the first two enzymes of arginine biosynthesis: acetylglutamate synthase activity requires complex formation with acetylglutamate kinase. J Biol Chem 276:42869–42880

    Article  CAS  PubMed  Google Scholar 

  • Abd-El-Al A, Ingraham J (1969) Control of carbamoylphosphate synthesis in Salmonella typhimurium. J Biol Chem 244:4033–4038

    CAS  PubMed  Google Scholar 

  • Abdelal AT, Nainan OV (1979) Regulation of N-acetylglutamate synthesis in Salmonella typhimurium. J Bacteriol 137:1040–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aleshin VV, Zakataeva NP, Livshits VA (1999) A new family of amino-acid-efflux proteins. Trends Biochem Sci 24:133–135

    Article  CAS  PubMed  Google Scholar 

  • Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ames GFL, Nikaido K, Wang IX, Liu PQ, Liu CE, Hu C (2001) Purification and characterization of the membrane-bound complex of an ABC transporter, the histidine permease. J Bioenerget Biomembr 33:79–92

    Article  CAS  Google Scholar 

  • Andrell J, Hicks MG, Palmer T, Carpenter EP, Iwata S, Maher MJ (2009) Crystal structure of the acid-inducible arginine decarboxylase from Escherichia coli: reversible decamer assembly controls enzyme activity. Biochemistry 48:3915–3927

    Article  CAS  PubMed  Google Scholar 

  • Asi AM, Rahman NA, Merican AF (2003) Applications of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)-l-arginine and ArgRc-l-citrulline protein-ligand complexes. J Mol Graph Model 22:249–262

    Article  CAS  Google Scholar 

  • Auger EA, Redding KE, Plumb T, Childs LC, Meng SY, Bennett GN (1989) Construction of lac fusions to the inducible arginine and lysine decarboxylase genes of Escherichia coli K-12. Mol Microbiol 3:609–620

    Article  CAS  PubMed  Google Scholar 

  • Azam TA, Ishihama A (1999) Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 274:33105–33113

    Article  CAS  PubMed  Google Scholar 

  • Bacon DF, Vogel HJ (1963) A regulatory gene simultaneously involved in repression and induction. Cold Spring Harbor Symp Quant Biol 28:437–438

    Article  CAS  Google Scholar 

  • Baumberg S (1970) Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Mol Gen Genet 106:162–173

    Article  CAS  PubMed  Google Scholar 

  • Bellman A, Vrljic M, Patek M, Krämer R, Eggeling L (2001) Expression control and specificity of the basic amino acid transporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774

    Article  Google Scholar 

  • Bény G, Cunin R, Glansdorff N, Boyen A, Charlier J, Kelker N (1982) Transcription of regions within the divergent argECBH operon of Escherichia coli: evidence for lack of an attenuation mechanism. J Bacteriol 151:58–61

    PubMed  PubMed Central  Google Scholar 

  • Bi H, Zhang C (2014) Integration host factor is required for the induction of acid resistance in Escherichia coli. Curr Microbiol 69:218–224

    Article  CAS  PubMed  Google Scholar 

  • Biesmans-Oldehinkel E, Doeven MK, Poolman B (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580:1023–1035

    Article  CAS  Google Scholar 

  • Blethen SL, Boeker ZA, Snell EE (1968) Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. J Biol Chem 243:1671–1677

    CAS  PubMed  Google Scholar 

  • Blum PH, Jovanovich SB, McCann MP, Schultz JE, Lesley SA, Burgess RR, Matin A (1990) Cloning and in vivo and in vitro regulation of cyclic AMP-dependent carbon starvation genes from Escherichia coli. J Bacteriol 172:3813–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier J, Patte JC, Stragier P (1984) Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci USA 81:4139–4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier J, Stragier P, Morales V, Rémy E, Gutierrez C (2008) Lysine represses transcription of Escherichia coli dapB gene by preventing its activation by the ArgP activator. J Bacteriol 190:5224–5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyen A, Charlier D, Crabeel M, Cunin R, Palchaudhuri S, Glansdorff N (1978) Studies on the control region of the bipolar argECBH operon of Escherichia coli. Mol Gen Genet 161:185–196

    CAS  PubMed  Google Scholar 

  • Boyen A, Charlier D, Charlier J, Sakanyan V, Mett I, Glansdorff N (1992) Acetylornithine deacetylase, succinyldiaminopimelate desuccinylase and carboxypeptidase G2 are evolutionary related. Gene 116:1–6

    Article  CAS  PubMed  Google Scholar 

  • Brennan RG (1993) The winged-helix DNA-binding motif: another helix-turn-helix takeoff. Cell 74:773–776

    Article  CAS  PubMed  Google Scholar 

  • Bretcher AP, Baumberg S (1976) Divergent transcription of the argECBH cluster of Escherichia coli K-12. Mutations which alter the control of enzyme synthesis. J Mol Biol 102:205–220

    Article  Google Scholar 

  • Brinkman AB, Ettema TJG, de Vos WM, van der Oost J (2003) The Lrp family of transcription regulators. Mol Microbiol 48:287–294

    Article  CAS  PubMed  Google Scholar 

  • Bröer S, Krämer R (1991a) Lysine excretion by Corynebacterium glutamicum. 1. Identification of a specific secretion carrier system. Eur J Biochem 202:131–135

    Article  PubMed  Google Scholar 

  • Bröer S, Krämer R (1991b) Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem 202:137–143

    Article  PubMed  Google Scholar 

  • Burke M, Merican AF, Sherratt DJ (1994) Mutant Escherichia coli arginine repressor proteins that fail to bind l-arginine, yet retain the ability to bind their normal DNA-binding sites. Mol Microbiol 13:609–618

    Article  CAS  PubMed  Google Scholar 

  • Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, function, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

    Article  CAS  PubMed  Google Scholar 

  • Caldara M, Charlier D, Cunin R (2006) The arginine regulon of Escherichia coli: whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation. Microbiology 152:3343–3354

    Article  CAS  PubMed  Google Scholar 

  • Caldara M, Nguyen Le Minh P, Bostoen S, Massant J, Charlier D (2007) ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12. J Mol Biol 373:251–267

    Article  CAS  PubMed  Google Scholar 

  • Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R (2008) Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. J Biol Chem 283:6347–6358

    Article  CAS  PubMed  Google Scholar 

  • Calvo JM, Matthews RG (1994) The Leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58:466–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canellakis ES, Paterakis AA, Huang SC, Panagiotidis CA, Kyriakidis DA (1993) Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli. Proc Natl Acad Sci USA 90:7129–7133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanie-Cornet MP, Foster JW (2001) Escherichia coli acid resistance: cAMP receptor protein and a 20-bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709–715

    Article  CAS  PubMed  Google Scholar 

  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castanie-Cornet MP, Cam K, Jacq A (2006) RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188:4264–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celis TF (1981) Chain-terminating mutants affecting a periplasmic binding protein involved in the active transport of arginine and ornithine in Escherichia coli. J Biol Chem 256:773–779

    CAS  PubMed  Google Scholar 

  • Celis TF (1982) Mapping of two loci affecting the synthesis and structure of a periplasmic binding protein involved in arginine and ornithine transport in Escherichia coli K-12. J Bacteriol 151:1314–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celis TF, Rosenfeld HJ, Maas WK (1973) Mutant of Escherichia coli defective in transport of basic amino acids. J Bacteriol 116:619–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervera J, Bendala E, Britton HG, Bueso J, Nassif Z, Lusty CJ, Rubio V (1996) Photoaffinity labeling with UMP of lysine 992 of carbamyl phosphate synthetase from Escherichia coli allows identification of the binding sites for the pyrimidine inhibitor. Biochemistry 35:7247–7255

    Article  CAS  PubMed  Google Scholar 

  • Charlier D, Glansdorff N (2004) Biosynthesis of arginine and polyamines. EcoSal Plus. https://doi.org/10.1128/ecosalplus.3.6.1.10

    Article  PubMed  Google Scholar 

  • Charlier D, Crabeel M, Palchaudhuri S, Cunin R, Boyen A, Glansdorff N (1978) Heteroduplex analysis of regulatory mutations and of insertions (IS1, IS2, IS5) in the bipolar argECBH operon of Escherichia coli. Mol Gen Genet 161:175–184

    CAS  PubMed  Google Scholar 

  • Charlier D, Crabeel M, Cunin R, Glansdorff N (1979) Tandem and inverted repeats of arginine genes in Escherichia coli K12. Mol Gen Genet 174:75–88

    Article  CAS  PubMed  Google Scholar 

  • Charlier D, Piette J, Glansdorff N (1982) IS3 can function as a mobile promoter in E. coli. Nucleic Acids Res 10:5935–5948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier D, Severne Y, Zafarullah M, Glansdorff N (1983) Turn-on of inactive genes by promoter recruitment in Escherichia coli: inverted repeats resulting in artificial divergent operons. Genetics 105:469–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier D, Weyens G, Roovers M, Piette J, Bocquet C, Piérard A, Glansdorff N (1988) Molecular interactions in the control region of the carAB operon encoding Escherichia coli carbamoylphosphate synthetase. J Mol Biol 204:867–877

    Article  CAS  PubMed  Google Scholar 

  • Charlier D, Roovers M, Van Vliet F, Boyen A, Cunin R, Nakamura YG, Glansdorff N, Piérard A (1992) Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding versus in vivo repression. J Mol Biol 226:367–386

    Article  CAS  PubMed  Google Scholar 

  • Charlier D, Hassanzadeh G, Kholti A, Gigot D, Piérard A, Glansdorff N (1995) carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of ColE1 multimers. J Mol Biol 250:392–406

    Article  CAS  PubMed  Google Scholar 

  • Charlier D, Nguyen Le Minh P, Roovers M (2018) Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 50:1647–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherney LT, Cherney MM, Garen CR, Lu GJ, James MNG (2008) Crystal structure of the arginine repressor protein in complex with the DNA operator from Mycobacterium tuberculosis. J Mol Biol 384:1330–1340

    Article  CAS  PubMed  Google Scholar 

  • Cherney LT, Cherney MM, Garen CR, James MNG (2009) The structure of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator and co-repressor, l-arginine. J Mol Biol 388:85–97

    Article  CAS  PubMed  Google Scholar 

  • Cho B, Barrett CL, Knight EM, Park YS, Palsson BO (2008) Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli. Proc Natl Acad Sci USA 105:19462–19467

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho BK, Federowicz S, Park YS, Zengler K, Palsson BO (2011) Deciphering the transcriptional regulatory logic of amino acid metabolism. Nat Chem Biol 8:65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, Cho YB, Kang TJ, Kim SC, Palsson BO, Cho BK (2015) The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. Nucleic Acids Res 43:3079–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commichau M, Stühlke J (2008) Trigger enzymes: bifunctional enzymes active in metabolism and in controlling gene expression. Mol Microbiol 67:692–702

    Article  CAS  PubMed  Google Scholar 

  • Crabeel M, Abadjieva A, Hilven P, Desimpelaere J, Soetens O (1997) Characterization of the Saccharomyces cerevisiae ARG7 gene encoding ornithine acetyltransferase, an enzyme with acetylglutamate synthase activity. Eur J Biochem 250:232–241

    Article  CAS  PubMed  Google Scholar 

  • Cunin R, Glansdorff N (1971) messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in argR + and argR strains of Escherichia coli K12. FEBS Lett 18:135–137

    Article  CAS  PubMed  Google Scholar 

  • Cunin R, Elseviers D, Sand G, Freundlich G, Glansdorff N (1969) On the functional organization of the argECBH cluster of genes in Escherichia coli K12. Mol Gen Genet 106:32–47

    Article  CAS  PubMed  Google Scholar 

  • Cunin R, Boyen A, Pouwels P, Glansdorff N, Crabeel M (1975) Parameters of gene expression in the bipolar argECBH operon of E. coli K12. The question of translational control. Mol Gen Genet 140:51–60

    Article  CAS  PubMed  Google Scholar 

  • Cunin R, Kelker N, Boyen A, Lang-Yang H, Zubay G, Glansdorff N, Maas WK (1976) Involvement of arginine in in vitro transcription of arginine genen C, B and H in Escherichia coli K-12. Biochem Biophys Res Commun 69:377–382

    Article  CAS  PubMed  Google Scholar 

  • Cunin R, Eckhardt T, Piette J, Boyen A, Piérard A, Glansdorff N (1983) Molecular basis for modulated regulation of gene expression in the arginine regulon of Escherichia coli K-12. Nucleic Acids Res 11:5007–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunin R, Glansdorff N, Piérard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czerwinsky RM, Mareya SM, Raushel FM (1995) Regulatory changes in the control of carbamoyl phosphate synthetase induced by truncation and mutagenesis of the allosteric binding domain. Biochemistry 34:13920–13927

    Article  Google Scholar 

  • Danchin A (2009) Cells need security valves. BioEssays 31:769–773

    Article  CAS  PubMed  Google Scholar 

  • Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268

    Article  CAS  PubMed  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Biase D, Tramonti A, Bossa F, Visca P (1999) The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211

    Article  PubMed  Google Scholar 

  • Delannay S, Charlier D, Tricot C, Villeret V, Piérard A, Stalon V (1999) Serine 948 and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli carbamoylphosphate synthetase and illustrate coupling effects of activation and inhibition pathways. J Mol Biol 286:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Devroede N (2006) Mechanisms of purine- and pyrimidine-dependent repression of the Escherichia coli carAB operon, encoding carbamoylphosphate synthase. Dissertation. Vrije Universiteit Brussel

  • Dohi M, Kikuchi A, Gorini L (1978) Some regulation profiles of ornithine transcarbamylase synthesis in vitro. J Biochem 84:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318

    Article  CAS  PubMed  Google Scholar 

  • Dyda F, Klein DC, Hickman AB (2000) GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct 29:81–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckhardt T (1980) Isolation of plasmids carrying the arginine repressor gene argR of Escherichia coli K12. Mol Gen Genet 178:447–452

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt T, Leisinger T (1975) Isolation and characterization of mutants with a feedback resistant N-acetylglutamate synthase in Escherichia coli K 12. Mol Gen Genet 138:225–232

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Sahm H (2003) New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol 180:155–160

    Article  CAS  PubMed  Google Scholar 

  • Elseviers D, Cunin R, Glansdorff N, Baumberg S, Ashcroft E (1972) Control regions within the argECBH cluster of Escherichia coli K12. Mol Gen Genet 117:349–366

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Kolmakova-Partensky L, Miller C (2007) A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J Biol Chem 282:176–182

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460:1040–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN (2015) Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev 90:1065–1099

    Article  PubMed  Google Scholar 

  • Fondi M, Brilli M, Emiliani G, Paffetti D, Fani R (2007) The primordial metabolism: an ancestral interconnection between leucine, arginine and lysine biosynthesis. BMC Evol Biol 7(suppl 2):S3. https://doi.org/10.1186/1471-2148-7-s2-s3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford RC, Beis K (2019) Learning the ABCs one at a time: structure and mechanism of ABC transporters. Biochem Soc Trans 47:23–36. https://doi.org/10.1042/bst20180147

    Article  CAS  PubMed  Google Scholar 

  • Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907

    Article  CAS  PubMed  Google Scholar 

  • Fraley CD, Kim JH, McCann MP, Matin A (1998) The Escherichia coli starvation gene cstC is involved in amino acid catabolism. J Bacteriol 180:4287–4290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franke I, Resch A, Daßler T, Maier T, Böck A (2003) YfiK from Escherichia coli promotes export from O-acetylserine and cysteine. J Bacteriol 185:1161–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fröhlich KS, Papenfort K, Berger AA, Vogel J (2012) A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res 40:3623–3640

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich KS, Haneke K, Papenfort K, Vogel J (2016) The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res 44:10406–10422

    PubMed  PubMed Central  Google Scholar 

  • Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science 324:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhou L, Jiao X, Lu F, Yan C, Zeng X, Wang J, Shi Y (2010) Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463:828–832

    Article  CAS  PubMed  Google Scholar 

  • Garnett JA, Marincs F, Baumberg S, Stockley PG, Phillips SEV (2008) Structure and function of the arginine repressor-operator complex from Bacillus subtilis. J Mol Biol 379:284–298

    Article  CAS  PubMed  Google Scholar 

  • Gerosa L, Kochanowski K, Heinemann K, Sauer U (2013) Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol Syst Biol 9:658. https://doi.org/10.1038/msb.2013.14

    Article  PubMed  PubMed Central  Google Scholar 

  • Gigot D, Crabeel M, Feller A, Charlier D, Lissens W, Glansdorff N, Piérard A (1980) Patterns of polarity in the Escherichia coli carAB gene cluster. J Bacteriol 143:914–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginesy M, Belotserkovsky J, Emman J, Isaksson L, Rova U (2015) Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microb Cell Fact 14:29. https://doi.org/10.1186/s12934-015-0211-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glansdorff N (1965) Topography of cotransducible arginine mutations. Genetics 51:167–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glansdorff N, Sand G, Verhoef C (1967) The dual genetic control of ornithine transcarbamylase synthesis in Escherichia coli K12. Mutation Res 4:743–751

    Article  CAS  PubMed  Google Scholar 

  • Glykos NM, Holzenburg A, Phillips SEV (1998) Low-resolution structural characterization of the arginine repressor/activator from Bacillus subtilis: a combined X-ray crystallographic and electron microscopical approach. Acta Cryst D54:215–225

    CAS  Google Scholar 

  • Gong S, Richard H, Foster JW (2003) YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185:4402–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong S, Ma Z, Foster JW (2004) The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol Microbiol 54:948–961

    Article  CAS  PubMed  Google Scholar 

  • Gorini L, Gundersen W (1961) Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli B. Proc Natl Acad Sci USA 47:961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorini L, Gundersen W, Burger M (1961) Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harbor Symp Quant Biol 26:173–182

    Article  CAS  PubMed  Google Scholar 

  • Goss TJ (2008) The ArgP protein stimulates Klebsiella pneumoniae gdhA promoter in a lysine-sensitive manner. J Bacteriol 190:4351–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandori R, Lavoie TA, Pflumm M, Tian G, Niersbach H, Maas WK, Fairman R, Carey J (1995) The DNA-binding domain of hexameric arginine repressor. J Mol Biol 254:150–162

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Kurer V, Leisinger T (1972) N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem 31:290–295

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Kwon HS, Yim JB, Hwang DS (1998) Effect of IciA protein on the expression of the nrd gene encoding ribonucleoside diphosphate reductase in Escherichia coli. Mol Gen Genet 259:610–614

    Article  CAS  PubMed  Google Scholar 

  • Hayashi SI, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci 21:27–30

    Article  CAS  PubMed  Google Scholar 

  • He A, Penix SR, Basting RP, Griffith JM, Creaper KE, Camperchioli D, Clark MW, Gonzales AS, Chávez-Eraso J, George NS, Bhagwat AA, Slonczewski JL (2017) Acid evolution of Escherichia coli K-12 eliminates amino acid decarboxylases and reregulates catabolism. Appl Environ Microbiol 83:442. https://doi.org/10.1128/aem.00442-17

    Article  CAS  Google Scholar 

  • Heuveling J, Frochaux V, Ziomkowska J, Wawrzinek R, Wessig P, Herrmann A (2014) Schneider E (2014) Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle. Biochim Biophys Acta 1838(1 Pt B):106–116. https://doi.org/10.1016/j.bbamem.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Ames GFL (1981) Two periplasmic transport proteins which interact with a common membrane protein show extensive homology: complete nucleotide sequence sequences. Proc Natl Acad Sci USA 78:6038–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden HM, Thoden JB, Raushel FM (1999) Carbamoyl phosphate synthetase: an amazing biochemical odyssey from substrate to product. Cell Mol Life Sci 56:507–522

    Article  CAS  PubMed  Google Scholar 

  • Hommais F, Krin E, Laurent-Winter C, Soutouria O, Malpertuy A, Le Caer JP, Danchin A, Bertin P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36

    Article  CAS  PubMed  Google Scholar 

  • Hosie A, Poole P (2001) Bacterial ABC transporters of amino acids. Res Microbiol 152:259–270

    Article  CAS  PubMed  Google Scholar 

  • Houghton JE, Bencini DA, O’Donovan GA, Wild JR (1984) Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K12. Proc Natl Acad Sci USA 81:4864–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Deonier C (1981) Mapping IS elements flanking the argF region of the Escherichia coli K-12 chromosome. Mol Gen Genet 181:222–229

    Article  CAS  PubMed  Google Scholar 

  • Hung SP, Baldi P, Hatfield GW (2002) Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 277:40309–40323

    Article  CAS  PubMed  Google Scholar 

  • Hwang DS, Kornberg A (1990) A novel protein binds a key origin sequence to block replication of an E. coli minichromosome. Cell 63:325–331

    Article  CAS  PubMed  Google Scholar 

  • Hwang DS, Kornberg A (1992) Opposed actions of regulatory proteins, DnaA and IciA, in opening the replication origin of Escherichia coli. J Biol Chem 267:23087–23091

    CAS  PubMed  Google Scholar 

  • Hwang DS, Tony B, Kornberg A (1992) IciA protein, a specific inhibitor of initiation of Escherichia coli chromosomal replication. J Biol Chem 267:2209–2213

    CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2018) Effects of polyamines on protein synthesis and growth of Escherichia coli. J Biol Chem 293:18702–18709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35

    CAS  PubMed  Google Scholar 

  • Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of Corynebacterium glutamicum l-arginine and l-citrulline producers. Appl Environ Microbiol 75:1635–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilgü H, Jeckelmann JM, Gapsys V, Ucurum Z, de Groot BL, Fotiadis D (2016) Insights into the molecular basis for substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Proc Natl Acad Sci USA 113:10358–10363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihama A (2010) Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchical networks. FEMS Microbiol Rev 34:628–645

    Article  CAS  PubMed  Google Scholar 

  • Ishihama A, Kori A, Koshio E, Yamada K, Maeda H, Shimada T, Makinoshima H, Iwata A, Fujita N (2014) Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 196:2718–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itikawa H, Baumberg S, Vogel H (1968) Enzymatic basis for a genetic suppression: accumulation and deacylation of N-acetylglutamine-γ-semialdehyde in enteric bacterial mutants. Biochim Biophys Acta 159:547–550

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y (1997) Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J Bacteriol 179:7280–7290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer R, Williams C, Miller C (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146:1797–1814

    Article  CAS  PubMed  Google Scholar 

  • Jacoby GA (1971) Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli B. J Bacteriol 108:645–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby GA (1972) Control of the argECBH cluster in Escherichia coli. Mol Gen Genet 117:337–348

    Article  CAS  PubMed  Google Scholar 

  • Jann A, Matsumoto H, Haas D (1988) The fourth arginine catabolic pathway of Pseudomonas aeruginosa. J Gen Microbiol 134:1043–1053

    CAS  PubMed  Google Scholar 

  • Javid-Majd F, Blanchard JS (2000) Mechanistic analysis of the argE-encoded N-acetylornithine deacetylase. Biochemistry 39:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Xue WF, Fukayama JW, Yetter J, Pickering M, Carey J (2005) Assymetric allosteric activation of the symmetric ArgR hexamer. J Mol Biol 346:43–56

    Article  CAS  PubMed  Google Scholar 

  • Jones ME, Spector L, Lipmann F (1955) Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J Am Chem Soc 77:819–820

    Article  CAS  Google Scholar 

  • Jones CM, Hernández Lozada NJ, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99:9381–9393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H, Pirch T, Hilger D (2006) Secondary transport of amino acids in prokaryotes. J Membr Biol 213:119–133

    Article  CAS  PubMed  Google Scholar 

  • Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H, Igarashi K (1991) Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem 266:20922–20927

    CAS  PubMed  Google Scholar 

  • Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci USA 89:4529–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi K, Shibuya S, Tomitori H, Kuraishi A, Igarashi K (1997) Excretion and uptake of putrescine by the PotE protein of Escherichia coli. J Biol Chem 272:6318–6323

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi K, Kuraishi A, Tomitori H, Igarashi A, Nishimura K, Shirahata A, Igarashi K (2000) Identification of the putrescine recognition site on polyamine transport protein PotE. J Biol Chem 275:36007–36012

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Aramaki H, Oyamada T, Makino K, Yamada M, Okamura H, Yokoyama K, Ishijima SA, Suzuki M (2008) Transcription regulation by feast/famine regulatory proteins, FFRPs, in Archaea and Eubacteria. Biol Pharm Bull 31:173–186

    Article  CAS  PubMed  Google Scholar 

  • Kelker N, Maas WK (1974) Selection of genetically repressible (argR +) strains of E. coli K-12 from genetically derepressed (argR ) mutants using acetylnorvaline. Mol Gen Genet 132:131–135

    CAS  PubMed  Google Scholar 

  • Kelker N, Maas WK, Yang HL, Zubay G (1976) In vitro synthesis and repression of argninosuccinase in Escherichia coli K-12: partial purification of the arginine repressor. Mol Gen Genet 144:17–20

    Article  CAS  PubMed  Google Scholar 

  • Kelln RA, O’Donovan GA (1976) Isolation and partial characterization of an argR mutant of Salmonella typhimurium. J Bacteriol 128:528–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerppola RE, Shyamala VK, Klebba P, Ames GFL (1991) The membrane-bound proteins of periplasmic permeases form a complex. Identification of the histidine permease HisQMP complex. J Biol Chem 266:9857–9865

    CAS  PubMed  Google Scholar 

  • Kholti A, Charlier D, Gigot D, Huysveld N, Roovers M, Glansdorff N (1998) pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 280:571–582

    Article  CAS  PubMed  Google Scholar 

  • Kilstrup M, Lu CD, Abdelal A, Neuhard J (1988) Nucleotide sequence of the carA gene and regulation of the carAB operon in Salmonella typhimurium. Eur J Biochem 176:421–429

    Article  CAS  PubMed  Google Scholar 

  • Kiupakis AK, Reitzer LJ (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalczyk I, Ratera M, Paladino A, Bartoccioni P, Errasti-Murugarren F, Valencia E, Portella G, Bial S, Zorzano A, Fita I, Orozco M, Carpena X, Vázquez-Ibar JL, Palacín M (2011) Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci USA 108:3935–3940

    Article  PubMed  PubMed Central  Google Scholar 

  • Krämer R (1994) Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol 162:1–13

    Article  PubMed  Google Scholar 

  • Krin E, Laurent-Winter C, Bertin PN, Danchin A, Kolb A (2003) Transcription regulation coupling of the divergent argG and metY promoters in Escherichia coli K-12. J Bacteriol 185:3139–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzyzek RA, Rogers P (1976) Effect of arginine on the stability and size of argECBH messenger ribonucleic acid in Escherichia coli. J Bacteriol 126:365–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kueh R, Rahman NA, Merican AF (2003) Computational docking of l-arginine and its structural analogues to C-terminal domain of Escherichia coli arginine repressor (ArgRc). J Mol Model 9:88–98

    Article  CAS  PubMed  Google Scholar 

  • Kuo T, Stocker BAD (1969) Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement. J Bacteriol 98:593–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kustu SG, Ames GFL (1973) The HisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J Bacteriol 116:107–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutukova EA, Livshits VA, Altman IA, Ptitsyn LR, Zyiatdinov MH, Tokmakova IL, Zakataeva NP (2005) The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634

    Article  CAS  PubMed  Google Scholar 

  • Labedan B, Boyen A, Baetens M, Charlier D, Chen P, Cunin R, Durbecq V, Glansdorff N, Herve G, Legrain C, Liand Z, Purcarea C, Roovers M, Sanchez R, Toong TL, Van de Casteele M, Van Vliet F, Xu Y, Zhang YF (1999) The evolutionary history of carbamoyltransferases: a complex set of paralogous genes was already present in the last universal common ancestor. J Mol Evol 49:461–473

    Article  CAS  PubMed  Google Scholar 

  • Lacour S, Landini P (2004) σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. J Bacteriol 186:7186–7195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laishram RS, Gowrishankar J (2007) Environmental regulation operating at the promoter clearance step of bacterial transcription. Genes Dev 21:1258–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal PB, Schneider BL, Vu K, Reitzer L (2014) The redundant aminotransferases in lysine and arginine synthesis and the extent of aminotransferase redundancy in Escherichia coli. Mol Microbiol 94:843–856

    Article  CAS  PubMed  Google Scholar 

  • Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledwige R, Blanchard JS (1999) The dual biosynthetic capability of N-acetylornithine aminotransferase in arginine and lysine biosynthesis. Biochemistry 38:3019–3024

    Article  Google Scholar 

  • Lee Y, Lee H, Yim J, Hwang DS (1997) The binding of two dimers of IciA protein to the dnaA promoter 1P element enhances the binding of RNA polymerase to the dnaA promoter 1P. Nucleic Acids Res 25:3486–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrain C, Halleux P, Stalon V, Glansdorff N (1972) The dual genetic control of ornithine carbamoyltransferase in Escherichia coli: a case of bacterial hybrid enzymes. Eur J Biochem 27:93–102

    Article  CAS  PubMed  Google Scholar 

  • Legrain C, Stalon V, Glansdorff N (1976) Escherichia coli ornithine carbamoyltransferase isoenzymes: evolutionary significance and the isolation of λargF and λargI transducing phages. J Bacteriol 128:35–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leisinger T, Haas D (1975) N-acetylglutamate synthetase of Escherichia coli: regulation of synthesis and activity by arginine. J Biol Chem 250:1690–1693

    CAS  PubMed  Google Scholar 

  • Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur T (2005) Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Proteins 61:258–271

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Oppenheim JD, Eckhardt T, Maas WK (1987) Nucleotide of the argR gene of Escherichia coli K12 and isolation of its product the arginine repressor. Proc Natl Acad Sci USA 84:6697–6701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim D, Oppenheim JD, Eckhardt T, Maas WK (1988) The unitary hypothesis for the repression mechanism of arginine biosynthesis in E. coli B and E. coli K12—revisited after 18 years. In Symposium on Gene Expression and Regulation: the Legacy of Luigi Gorini. Elsevier Science Publishers, Amsterdam

  • Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177:4097–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipscomb WN, Kantrowitz ER (2012) Structure and mechanisms of Escherichia coli aspartate transcarbamoylase. Acc Chem Res 45:444–453

    Article  CAS  PubMed  Google Scholar 

  • Lissens W, Cunin R, Kelker N, Glansdorff N, Piérard A (1980) In vitro synthesis of Escherichia coli carbamoylphosphate synthase: evidence for a participation of the arginine repressor in cumulative repression. J Bacteriol 141:58–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livshits VA, Zakaraeva NP, Aleshin VV, Vitushkina MV (2003) Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Res Microbiol 154:123–135

    Article  CAS  PubMed  Google Scholar 

  • Lu CD (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. App Microbiol Biotechnol 70:261–272

    Article  CAS  Google Scholar 

  • Lu CD, Abdelal AT (1999) Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium. J Bacteriol 181:1934–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CD, Houghton JE, Abdelal AT (1992) Characterization of the arginine repressor from Salmonella typhimurium and its interaction with the carAB operator. J Mol Biol 225:11–24

    Article  CAS  PubMed  Google Scholar 

  • Lustig B, Jernigan RL (1995) Consistencies of individual DNA base-amino acid interactions in structures and sequences. Nucleic Acids Res 23:4707–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Richard H, Tucker D, Conway T, Foster JW (2002) Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YihW). J Bacteriol 184:7001–7012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Gong S, Richard H, Tucker D, Conway T, Foster JW (2003a) GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49:1309–1320

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Richard H, Foster JW (2003b) pH-Dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852–6859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Masuda N, Foster JW (2004) Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186:7378–7389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas WK (1957) Regulation of arginine biosynthesis in Escherichia coli. Biol Bull 111:319

    Google Scholar 

  • Maas WK (1961) Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harbor Symp Quant Biol 26:183–191

    Article  CAS  PubMed  Google Scholar 

  • Maas WK (1991) The regulation of arginine biosynthesis: its contribution to understanding the control of gene expression. Genetics 128:489–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maas WK (2007) The potential for the formation of the arginine biosynthetic enzymes and its masking during evolution. BioEssays 29:484–488

    Article  CAS  PubMed  Google Scholar 

  • Maas WK, Clark AJ (1964) Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. II. Dominance of repressibility in diploids. J Mol Biol 8:365–370

    Article  CAS  PubMed  Google Scholar 

  • Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623

    Article  CAS  PubMed  Google Scholar 

  • Marbaniang CN, Gowrishankar J (2011) Role of ArgP (IciA) in lysine-mediated repression in Escherichia coli. J Bacteriol 193:5985–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marbaniang CN, Gowrishankar J (2012) Transcriptional cross-regulation between Gram-negative and Gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum. J Bacteriol 194:5657–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marc F, Weigel P, Legrain C, Almeras Y, Santrot M, Glansdorff N, Sakanyan V (2000) Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms. Eur J Biochem 267:5217–5226

    Article  CAS  PubMed  Google Scholar 

  • Marc F, Weigel P, Legrain C, Glansdorff N, Sakanyan V (2001) An invariant threonine is involved in self-catalyzed cleavage of the precursor protein for ornithine acetyltransferase. J Biol Chem 276:25404–25410

    Article  CAS  PubMed  Google Scholar 

  • Marvil DK, Leisinger T (1977) N-acetylglutamate synthase of Escherichia coli. Purification, characterization, and molecular properties. J Biol Chem 252:3295–3303

    CAS  PubMed  Google Scholar 

  • Masuda N, Church GM (2002) Escherichia coli gene expression responsive to levels of the response regulator EvgA. J Bacteriol 184:6225–6234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda N, Church GM (2003) Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712

    Article  CAS  PubMed  Google Scholar 

  • Mergeay M, Gigot D, Beckman J, Glansdorff N, Piérard A (1974) Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K-12. Mol Gen Genet 133:299–316

    Article  CAS  PubMed  Google Scholar 

  • Merlo LMF, Sadowsky MJ, Ferguson JA, Dean AM (2006) The argR B of Escherichia coli is rare in isolates obtained from natural sources. Gene 376:240–247

    Article  CAS  PubMed  Google Scholar 

  • Michael AJ (2018) Polyamine function in archaea and bacteria. J Biol Chem 293:18693–18701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427:3389–3406

    Article  CAS  PubMed  Google Scholar 

  • Miltcheva Karaivanova I, Weigel P, Takahashi M, Fort C, Versavaud A, Van Duyne G, Charlier D, Hallet JN, Glansdorff N, Sakanyan V (1999) Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. J Mol Biol 291:843–855

    Article  PubMed  Google Scholar 

  • Minh PN, Devroede N, Massant J, Maes D, Charlier D (2009) Insights into the architecture and stoichiometry of Escherichia coli PepA·DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Res 37:1463–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki J, Kobashi N, Nishiyama M, Yamane H (2001) Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through α-aminoadipate. J Bacteriol 183:5067–5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monsieurs P, De Keersmaecker S, Navarre WW, Bader MW, De Smet F, McClelland M, Fang FC, De Moor B, Vanderleyden J, Marchal K (2005) Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J Mol Evol 60:462–474

    Article  CAS  PubMed  Google Scholar 

  • Morizono H, Cabrera-Luque J, Shi D, Gallegos R, Yamaguchi S, Yu X, Allewell N, Malamy M, Tuchman M (2006) Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. J Bacteriol 188:2974–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris DR, Boeker FA (1983) Biosynthetic and biodegradative ornithine and arginine decarboxylases from Escherichia coli. Methods Enzymol 94:125–134

    Article  CAS  PubMed  Google Scholar 

  • Morris DR, Pardee AB (1965) A biosynthetic ornithine decarboxylase in Escherichia coli. Biochem Biophys Res Commun 20:697–702

    Article  CAS  PubMed  Google Scholar 

  • Nandineni MR, Gowrishankar J (2004) Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol 186:3539–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandineni MR, Laishram RS, Gowrishankar J (2004) Osmosensitivity associated with insertions in argP (iciA) or glnE in glutamate synthase-deficient mutants of Escherichia coli. J Bacteriol 186:6391–6399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman E, Lin R (1995) Leucine responsive regulatory protein: a global regulator for gene expression in E. coli. Ann Rev Microbiol 49:747–775

    Article  CAS  Google Scholar 

  • Nguyen Le Minh P, Nadal M, Charlier D (2016) The trigger enzyme PepA (aminopeptidase A) of Escherichia coli, a transcriptional repressor that generates positive supercoiling. FEBS Lett 590:1816–1825

    Article  CAS  PubMed  Google Scholar 

  • Nguyen Le Minh P, Ruiz Velázquez, Vandermeeren S, Abwoyo P, Bervoets I, Charlier D (2018) Differential protein-DNA contacts for activation and repression by ArgP, a LysR-type (LTTR) transcriptional regulator in Escherichia coli. Microbiol Res 206:141–158

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Sakanyan V, Charlier D, Glansdorff N, Van Duyne GD (1999) Structure of the arginine repressor from Bacillus stearothermophilus. Nat Struct Biol 6:427–432

    Article  CAS  PubMed  Google Scholar 

  • Niersbach H, Lin R, Van Duyne GD, Maas WK (1998) A superrepressor mutant of the arginine repressor with a correctly predicted alteration of ligand binding specificity. J Mol Biol 279:753–760

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Nishiyama M, Kobashi N, Kosuge T, Hoshino T, Yamane H (1999) A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res 9:1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Panagiotidis CA, Huang SC, Cannelakis ES (1994) Post-translational and transcriptional regulation of polyamine biosynthesis is Escherichia coli. Int J Biochem 26:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Panagiotidis CA, Huang SC, Cannelakis ES (1995) Relationship of the expression of the S20 and L34 ribosomal proteins to polyamine biosynthesis in Escherichia coli. Int J Biochem Cell Biol 27:157–168

    Article  CAS  PubMed  Google Scholar 

  • Panchal CJ, Bagchee SN, Guha A (1974) Divergent orientation of transcription from the argECBH operon of Escherichia coli. J Bacteriol 117:675–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannekoek H, Cunin R, Boyen A, Glansdorff N (1975) In vitro transcription of the bipolar argECBH operon in Escherichia coli K12. FEBS Lett 51:143–145

    Article  CAS  PubMed  Google Scholar 

  • Pathania A, Sardesai AA (2015) Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of l-lysine. J Bacteriol 197:2036–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathania A, Gupta AK, Dubey S, Gopal B, Sardesai AA (2016) The topology of the l-arginine exporter ArgO conforms to an Nin-Cout configuration in Escherichia coli: requirement for the cytoplasmic N-terminal domain, functional helical interaction, and an aspartate pair for ArgO function. J Bacteriol 198:3186–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels K, Abadjieva A, Hilven P, Stanckievicz A, Crabeel M (2003) The N-acetylglutamate synthase/N-acetylglutamate kinase metabolon of Saccharomyces cerevisiae allows co-ordinated feedback regulation of the first two steps in arginine biosynthesis. Eur J Biochem 270:1014–1024

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Nguyen Le Minh P, Foulquié-Moreno M, Charlier D (2009) Competitive activation of the Escherichia coli argO gene coding for an arginine exporter by the transcriptional regulators Lrp and ArgP. Mol Microbiol 74:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Piérard A (1966) Control of the activity of Escherichia coli carbamoylphosphate synthetase by antagonistic allosteric effectors. Science 154:1572–1573

    Article  PubMed  Google Scholar 

  • Piérard A, Wiame JM (1964) Regulation and mutation affecting a glutamine-dependent formation of carbamoylphosphate in Escherichia coli. Biochem Biophys Res Commun 15:76–81

    Article  PubMed  Google Scholar 

  • Piérard A, Glansdorff N, Mergeay M, Wiame JM (1965) Control of the biosynthesis of carbamoylphosphate in Escherichia coli. J Mol Biol 14:23–36

    Article  PubMed  Google Scholar 

  • Piérard A, Lissens W, Halleux P, Cunin R, Glansdorff N (1980) Role of transcriptional regulation and enzyme inactivation in the synthesis of Escherichia coli carbamoylphosphate synthetase. J Bacteriol 141:382–385

    PubMed  PubMed Central  Google Scholar 

  • Piette J, Cunin R, Boyen A, Charlier D, Crabeel M, Van Vliet F, Glansdorff N, Squires C, Squires CL (1982a) The regulatory region of the divergent argECBH operon in Escherichia coli K12. Nucleic Acids Res 10:8031–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piette J, Cunin R, Van Vliet F, Charlier D, Crabeel M, Ota Y, Glansdorff N (1982b) Homologous control siyes and DNA transcription starts in the related argF and argI genes of Escherichia coli K12. EMBO J 1:853–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piette J, Nyunoya H, Lusty CJ, Cunin R, Weyens G, Crabeel M, Charlier D, Glansdorff N, Piérard A (1984) DNA sequence of the carA gene and control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoylphosphate synthetase in Escherichia coli K12. Proc Natl Acad Sci USA 81:4134–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouwels PH, Cunin R, Glansdorff N (1974) Divergent transcription in the argECBH cluster of genes in Escherichia coli K12. J Mol Biol 83:421–424

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal BS, DePonte J 3rd, Tuchman M, Malamy MH (1998) Use of inducible feedback-resistant N-acetylglutamate synthetase (argA) genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strains. Appl Envir Microbiol 64:1805–1811

    CAS  Google Scholar 

  • Ramon-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V (2002) Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 10:329–342

    Article  CAS  PubMed  Google Scholar 

  • Ramon-Maiques S, Fernandez-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V (2006) Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356:695–713

    Article  CAS  PubMed  Google Scholar 

  • Raushel FM, Thoden JB, Holden HM (1999) The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia. Biochemistry 38:7891–7899

    Article  CAS  PubMed  Google Scholar 

  • Reitzer LJ (2005) Catabolism of amino acids and related compounds. EcoSal Plus. https://doi.org/10.1128/ecosalplus.3.4.7

    Article  PubMed  Google Scholar 

  • Reitzer LJ, Schneider BL (2001) Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes D, Schwabe JWR, Chapman L, Fairall L (2010) Towards an understanding of protein-DNA recognition. Philos Trans R Soc Lond B 351:501–509

    Google Scholar 

  • Richard H, Foster JW (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032–6041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers P, Krzyzek R, Kaden TM, Arfman E (1971) Effect of arginine and canavanine on arginine messenger RNA synthesis. Biochem Biophys Res Commun 44:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Rogers P, Kaden TM, Toth J (1975) Repression of arg mRNA synthesis by l-arginine in cell-free extracts of Escherichia coli. Biochem Biophys Res Commun 65:1284–1291

    Article  CAS  PubMed  Google Scholar 

  • Roovers M, Charlier D, Feller A, Gigot D, Holemans F, Lissens W, Piérard A, Glansdorff N (1988) carP, a novel gene regulating the transcription of the carbamoylphosphate synthetase operon of Escherichia coli. J Mol Biol 204:857–865

    Article  CAS  PubMed  Google Scholar 

  • Rosen BP (1971) Basic amino acid transport in Escherichia coli. J Biol Chem 246:3653–3662

    CAS  PubMed  Google Scholar 

  • Rubio V, Cervera J, Lusty CJ, Bendala E, Britton HG (1991) Domain structure of the large subunit of Escherichia coli carbamoyl phosphate synthetase. Location of the binding site for the allosteric inhibitor UMP in the COOH-terminal domain. Biochemistry 30:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Haneburger I, Jung K (2011) Identification of ArgP and Lrp as transcriptional regulators of lysP, the gene encoding the specific lysine permease of Escherichia coli. J Bacteriol 193:2536–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier HJ (2000) Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146:1775–1795

    Article  CAS  PubMed  Google Scholar 

  • Sakanyan V, Kochikyan A, Mett I, Legrain C, Charlier D, Piérard A, Glansdorff N (1992) A re-examination of the pathway for ornithine biosynthesis in a thermophilic and two mesophilic Bacillus species. J Gen Microbiol 138:125–130

    Article  CAS  Google Scholar 

  • Sakanyan V, Charlier D, Legrain C, Kochikyan A, Mett I, Piérard A, Glansdorff N (1993a) Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus: dual function of ornithine acetyltransferase. J Gen Microbiol 139:393–402

    Article  CAS  PubMed  Google Scholar 

  • Sakanyan V, Desmarez M, Legrain C, Charlier D, Mett I, Kochikyan A, Savchenko A, Boyen A, Falmagne P, Piérard A, Glansdorff N (1993b) Gene cloning, sequence analysis, purification, and characterization of a thermostable aminoacylase from Bacillus stearothermophilus. Appl Environ Microbiol 59:3878–3888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142(Pt 1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Samalíková M, Carey J, Grandori R (2005) Assembly of the hexameric Escherichia coli arginine repressor investigated by nano-electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19:2549–2552

    Article  CAS  PubMed  Google Scholar 

  • Sander T, Farke N, Diehk C, Kuntz M, Glatter T, Link H (2019) Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. Cell Systems 8:66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayed AK, Odom C, Foster JW (2007) The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology 153:2584–2592

    Article  CAS  PubMed  Google Scholar 

  • Schneefeld M, Busche T, Geffers R, Kalinowski J, Bange FC (2017) The transcriptional regulator LysG (Rv1985c) of Mycobacterium tuberculosis activates lysE (Rv1986) in a lysine-dependent manner. PLoS One 12(10):e0186505. https://doi.org/10.1371/journal.pone.0186505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider BL, Kiupakis AK, Reitzer LJ (1998) Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J Bacteriol 180:4278–4286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sens D, Natter W, Garvin RT, James E (1977a) Transcription of the argF and argI genes of the arginine biosynthetic regulon of E. coli. Mol Gen Genet 155:7–18

    Article  CAS  PubMed  Google Scholar 

  • Sens D, Natter W, James E (1977b) In vitro transcription of the Escherichia coli K-12 argA, argE, and argCBH operons. J Bacteriol 130:642–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Bennett GN (1994) Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli. J Bacteriol 176:7017–7023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Waasdorp BC, Bennett GN (1993) Modulation of acid-induced amino acid decarboxylase gene expression by hns in Escherichia coli. J Bacteriol 175:1182–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi D, Morizono Y, Xiaolin Y, Roth L, Caldovic L, Allewell NM, Tuchman M (2005) Crystal structure of a N-acetylornithine transcarbamylase from Xanthomonas campestris: a novel enzyme in a new arginine biosynthetic pathway found in several eubacteria. J Biol Chem 280:14366–14369

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Morizono H, Cabrera-Luque J, Xiaolin Y, Roth L, Malamy MH, Allewell NM, Tuchman M (2006) Structure and catalytic mechanism of a novel N-succinyl-l-ornithine transcarbamylase in arginine biosynthesis of Bacteroides fragilis. J Biol Chem 281:20623–20631

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Caldovic L, Tuchman M (2018) Sources and fates of carbamyl phosphate: a labile energy-rich molecule with multiple facets. Biology 7:E34. https://doi.org/10.3390/biology7020034

    Article  CAS  PubMed  Google Scholar 

  • Stalon V, Vander Wauven C, Momin P, Legrain C (1987) Catabolism of arginine, citrulline and ornithine by Pseudomonas and related species. J Gen Microbiol 133:2487–2495

    CAS  PubMed  Google Scholar 

  • Stim-Herndon KP, Flores TM, Bennett GN (1996) Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. Microbiology 142:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Stirling CJ, Szatmari G, Stewart G, Smith CH, Sherratt DJ (1988) The arginine repressor is essential for plasmid stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7:4389–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirling CJ, Colloms SD, Collins JF, Szatmari G, Sherratt DJ (1989) xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8:1623–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strawn R, Melicherick M, Green M, Stocker T, Carey J, Ettrich R (2010) Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between l-arginine ligands and resident arginine residues. PLoS Comput Biol 6(6):e1000801. https://doi.org/10.1371/journal.pcbi.1000801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suiter AM, Bänziger O, Dean AM (2003) Fitness consequences of a regulatory polymorphism in a seasonal environment. Proc Natl Acad Sci USA 100:12782–12786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunnerhagen M, Nilges M, Otting G, Carey J (1997) Solution structure of the DNA-binding domain and model for the complex of multifunctional hexameric arginine repressor with DNA. Nat Struct Biol 4:819–826

    Article  CAS  PubMed  Google Scholar 

  • Szwajkajzer D, Dai L, Fukayama JW, Abramczyk B, Fairman R, Carey J (2001) Quantitative analysis of DNA binding by the Escherichia coli arginine repressor. J Mol Biol 312:949–962

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoden JB, Raushel FM, Wesenberg G, Holden HM (1999a) The binding of inosine monophosphate to Escherichia coli carbamoyl phosphate synthetase. J Biol Chem 274:22502–22507

    Article  CAS  PubMed  Google Scholar 

  • Thoden JB, Wesenberg G, Raushel FM, Holden HM (1999b) Carbamoyl phosphate synthetase: closure of the B-domain as a result of nucleotide binding. Biochemistry 38:2347–2357

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Maas WK (1994) Mutational analysis of the arginine repressor of Escherichia coli. Mol Microbiol 13:599–608

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Lim D, Carey J, Maas WK (1992) Binding of the arginine repressor of Escherichia coli to its operator sites. J Mol Biol 226:387–397

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Lim D, Oppenheim JD, Maas WK (1994) Explanation for different types of regulation of arginine biosynthesis in Escherichia coli B and Escherichia coli K12 caused by a difference between their arginine repressors. J Mol Biol 235:221–230

    Article  CAS  PubMed  Google Scholar 

  • Tomitori H, Kashiwagi K, Igarashi K (2012) Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli. Amino Acids 42:733–740

    Article  CAS  PubMed  Google Scholar 

  • Torres Montaguth OE (2014) Transcriptional regulation of arginine transport genes in Escherichia coli. Dissertation, Vrije Universiteit Brussel

  • Tramonti A, Visca P, de Canio M, Falconi M, De Biase D (2002) Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184:2603–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tricot C, Stalon V, Legrain C (1991) Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyltransferase pathways. J Gen Microbiol 137:2911–2918

    Article  CAS  PubMed  Google Scholar 

  • Tsai MF, Miller C (2013) Substrate selectivity in arginine-dependent acid resistance in enteric bacteria. Proc Natl Acad Sci USA 110:5893–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuchman M, Rajagopal BS, McCann MT, Malamy MH (1997) Enhanced production of arginine and urea by genetically engineered Escherichia coli K-12 strains. Appl Environ Microbiol 63:33–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Udaka S (1966) Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol 91:617–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Udaka S (1970) Isolation of the arginine repressor in Escherichia coli. Nature (London) 228:336–338

    Article  CAS  Google Scholar 

  • Udaka S, Kinoshita S (1958) Studies on l-ornithine fermentation. I. The biosynthesis pathway of l-ornithine in Micrococcus glutamicus. J Gen Appl Microbiol 4:283–288

    Article  CAS  Google Scholar 

  • Van de Casteele M, Desmarez M, Legrain C, Piérard A, Glansdorff N (1990) Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria. J Gen Microbiol 136:1177–1183

    Article  Google Scholar 

  • Van Duyne GD, Ghosh G, Maas WK, Sigler PB (1996) Structure of the oligomerization and l-arginine binding domain of the arginine repressor of Escherichia coli. J Mol Biol 256:377–391

    Article  PubMed  Google Scholar 

  • Van Vliet F, Cunin R, Jacobs A, Piette J, Gigot D, Lauwereys A, Piérard A, Glansdorff N (1984) Evolutionary divergence of genes for ornithine and aspartate carbamoyltransferases-complete sequence and mode of regulation of the Escherichia coli argF gene: comparison with argI and pyrB. Nucleic Acids Res 12:6277–6289

    Article  PubMed  PubMed Central  Google Scholar 

  • Vander Wauven C, Stalon V (1985) Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J Bacteriol 164:882–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco AM, Leguina JI, Lazcano A (2002) Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 55:445–459

    Article  CAS  PubMed  Google Scholar 

  • Vetting MW, de Carvalho LPS, Yu M, Hedge SS, Magnet S, Roderick SL, Blanchard JS (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433:212–226

    Article  CAS  PubMed  Google Scholar 

  • Vogel HJ (1957) Repression and induction as control mechanisms of enzyme biogenesis: the “adaptive” formation of acetylornithinase. In: McElroy WD, Glass B (eds) The chemical basis of heredity. The John Hopkins Press, Baltimore, pp 269–272

    Google Scholar 

  • Vogel HJ (1961) Aspects of repression in the regulation of enzyme synthesis: pathway-wide control and enzyme-specific response. Cold Spring Harbor Symp Quant Biol 26:163–171

    Article  CAS  PubMed  Google Scholar 

  • Vogel HJ (1970) Arginine biosynthetic system in Escherichia coli. Methods Enzymol 17A:260–264

    Article  Google Scholar 

  • Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Article  CAS  PubMed  Google Scholar 

  • Vrljic MG, Garg J, Bellmann A, Wachi S, Freudl R, Malecki MJ, Sahm H, Kozina VJ, Eggeling L, Saier MH (1999) The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradigm for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotecnol 1:327–337

    CAS  Google Scholar 

  • Vyas S, Maas WK (1963) Feedback inhibition of acetylglutamate synthase by arginine in Escherichia coli. Arch Biochem Biophys 100:542–546

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Charlier D, Glansdorff N (1998) The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operator. J Mol Biol 277:805–824

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yan R, Zhang X, Chu Q, Shi Y (2014) Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter. Proc Natl Acad Sci USA 111:12734–12739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel P, Marc F, Simon S, Sakanyan V (2002) Ornithine N-acetyltransferase and arginine biosynthesis in thermophilic bacteria. In: Recent Research Developments in Microbiology 6:95-106. Research Signpost. S.G. Pandalai (editor)

  • Wintjens R, Liévin J, Rooman M, Buisine E (2000) Contribution of cation–π interactions to the stability of protein-DNA complexes. J Mol Biol 302:395–410

    Article  CAS  PubMed  Google Scholar 

  • Wissenbach U, Keck B, Unden G (1993) Physical map location of the new artPIQMJ genes of Escherichia coli, encoding a periplasmic arginine transport system. J Bacteriol 175:3687–3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissenbach U, Six S, Bongaerts J, Ternes D, Steinwachs S, Unden G (1995) A third periplasmic transport system for l-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 17:675–686

    Article  CAS  PubMed  Google Scholar 

  • Wu WH, Morris DR (1973) Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties. J Biol Chem 248:1687–1695

    CAS  PubMed  Google Scholar 

  • Xu Y, Liang Z, Legrain C, Ruger H, Glansdorff N (2000) Evolution of arginine biosynthesis in the bacterial domain: novel gene-enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-α-acetylornithinase. J Bacteriol 182:1609–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Glansdorff N, Labedan B (2006) Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes. BMC Genom 7:4. https://doi.org/10.1184/1471-2164-7-4

    Article  Google Scholar 

  • Xu Y, Labedan B, Glansdorff N (2007) Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway. Microbiol Mol Biol Rev 71:36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York MK, Stodolski M (1981) Characterization of P1 arg derivatives from Escherichia coli K-12 transduction. I. IS1 elements flank the argF gene segment. Mol Gen Genet 181:230–240

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Houry WA (2010) Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem Cell Biol 88:301–314

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Lou Z, Fu S, Yang A, Shen H, Li Z, Feng Y, Bartlam M, Wang H, Rao Z (2010) Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. J Mol Biol 396:1012–1024

    Article  CAS  PubMed  Google Scholar 

  • Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zúñiga M, Pérez G, González-Candelas (2002) Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol 25:429–444

    Article  CAS  PubMed  Google Scholar 

  • Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare JM, Huang H, Groisman EA (2005) Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA 102:2862–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work performed in our laboratory was supported by research grants from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (Research Foundation-Flanders G.0056.03, G.0014.02N, G.0429.06, G.0321.13N) and the Research Council of the Vrije Universiteit Brussel. This review is dedicated to the memory of the late Nicolas Glansdorff, outstanding microbiologist and lecturer, devoted pioneer of arginine metabolism, with a passion for the origin and evolution of life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Charlier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Handling Editor: J. D. Wade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlier, D., Bervoets, I. Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 51, 1103–1127 (2019). https://doi.org/10.1007/s00726-019-02757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02757-8

Keywords

Navigation