Skip to main content
Log in

Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

76 mutants have been isolated in which the function of the single carbamoylphosphate synthetase of Escherichia coli K 12 is affected. A wide variety of phenotypes have been observed among these mutants, the most typical ones being: requirement for arginine and uracil, arginineless behaviour, sensitivity towards arginine and sensitivity towards uracil. The mutations have been localized by reciprocal transduction and deletion mapping; all are clustered in the same locus, car. The study of carbamoylphosphate synthesizing activities of these mutants and the combination of car mutations in various in vivo as well as in vitro complementation tests lead to the conclusion that car contains two genes: carA, covering the left part of the locus and coding for the “glutamine subunit” of the enzyme; carB, to the right, governing the synthesis of the heavy subunit of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Al, A., Ingraham, J. L.: Control of carbamylphosphate synthesis in Salmonella typhimurium. J. biol. Chem. 244, 4033–4038 (1969a)

    Google Scholar 

  • Abd-El-Al, A., Ingraham, J. L.: Cold sensitivity and other phenotypes resulting from mutation in pyrA gene. J. biol. Chem. 244, 4039–4045 (1969b)

    Google Scholar 

  • Abd-El-Al, A., Kessler, D. P., Ingraham, J. L.: Arginine-auxotrophic phenotype resulting from a mutation in the pyrA gene of Escherichia coli b/r. J. Bact. 97, 466–468 (1969)

    Google Scholar 

  • Adelberg, E. A., Mandel, M., Chein Ching Chen, G.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem. biophys. Res. Commun. 18, 788–795 (1965)

    Google Scholar 

  • Anderson, P. M., Meister, A.: Evidence for an actvated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamylphosphate synthetase. Biochemistry 4, 2803–2809 (1965)

    Google Scholar 

  • Anderson, P. M., Meister, A.: Control of carbamylphosphate synthetase by purine and pyrimidine nucleotides. Biochemistry 5, 3164–3169 (1966)

    Google Scholar 

  • Anderson, P. M., Marvin, S. V.: Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamylphosphate synthetase of Escherichia coli. Biochemistry 9, 171–178 (1970)

    Google Scholar 

  • Bachman, B. J.: Pedigrees of some mutant strains of Escherichia coli K12. Bact. Rev. 36, 525–557 (1972)

    Google Scholar 

  • Beckwith, J. R., Pardee, A. B., Austrian, R., Jacob, F.: Coordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. J. molec. Biol. 5, 618–634 (1962)

    Google Scholar 

  • Charles, H. P., Roberts, G. A.: Carbon dioxide as a growth factor for mutants of Escherichia coli. J. gen. Microbiol. 51, 211–224 (1968)

    Google Scholar 

  • Davis, R. H.: Channeling in Neurospora metabolism. In: Organizational biosynthesis (ed. J. H. Vogel, J. O. Lampen and V. Bryzon), p. 303–322. New York: Academic Press 1967

    Google Scholar 

  • Eisenstark, A.: Linkage of arginine sensitive (ars) and uracil-arginine requiring (pyrA) loci of Salmonella typhimurium. Nature (Lond.) 213, 1263–1264 (1967)

    Google Scholar 

  • Glansdorff, N.: Topography of cotransducible arginine mutations in Escherichia coli K12. Genetics 51, 167–179 (1965)

    Google Scholar 

  • Gorini, L., Kalman, S. M.: Control by uracil of carbamylphosphate synthesis in Escherichia coli. Biochim. biophys. Acta (Amst.) 69, 355–360 (1963)

    Google Scholar 

  • Gorini, L., Kaufman, H.: Selecting bacterial mutants by the penicillin method. Science 131, 604–605 (1960)

    Google Scholar 

  • Hartman, P. E., Hartman, Z., Serman, D.: Complementation mapping by abortive transduction of histidine requiring mutants. J. gen. Microbiol. 22, 354–368 (1960)

    Google Scholar 

  • Hopwood, D. A.: Genetic analysis and genome structure in Streptomyces coelicolor. Bact. Rev. 31, 373–403 (1969)

    Google Scholar 

  • Issaly, I. M., Issaly, A. S., Reissig, J. L.: Carbamylphosphate biosynthesis in Bacillus subtilis. Biochim. biophys. Acta (Amst.) 198, 482–494 (1970)

    Google Scholar 

  • Jacob, F.: Transduction of lysogeny in Escherichia coli. Virology 1, 207–220 (1955)

    Google Scholar 

  • Kalman, S. M., Duffield, P. H., Brozozowski, I.: Purification and properties of a bacterial carbamylphosphate synthetase. J. biol. Chem. 241, 1871–1877 (1966)

    Google Scholar 

  • Khedouri, E., Anderson, P. M., Meister, A.: Selective inactivation of the glutamine binding site of Escherichia coli carbamylphosphate synthetase by 2-amino-4-oxo-5-chloropentanoic acid. Biochemistry 5, 3552–3556 (1966)

    Google Scholar 

  • Loutit, J. S.: Studies on nutritionally deficient strains of Pseudomonas aeruginosa. 1. The production by X-rays and the isolation of nutritionally deficient strains. Aust. J. exp. Biol. med. Sci. 30, 287–294 (1952)

    Google Scholar 

  • Low, B.: Formation of merodiploids in mating with a class of rec- recipient strain of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 60, 160–167 (1968)

    Google Scholar 

  • Martin, R. G.: Frameshift mutants in the histidine operon of Salmonella typhimurium. J. molec. Biol. 26, 311–328 (1967)

    Google Scholar 

  • Mergeay, M.: Physiologie et génétique d'un branchement métabolique: la biosynthèse du carbamylphosphate chez Escherichia coli. Thèse de doctorat, Université Libre de Bruxelles (1969)

  • Novick, P. R., Maas, W. K.: Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J. Bact. 81, 236–240 (1961)

    Google Scholar 

  • Oeschger, N. S., Hartman, P. E.: ICR-induced frameshift mutations in the histidine operon of Salmonella. J. Bact. 101, 490–504 (1970)

    Google Scholar 

  • Piérard, A.: Control of the activity of Escherichia coli carbamoylphosphate synthetase by antagonistic allosteric effectors. Science 154, 1572–1573 (1966)

    Google Scholar 

  • Piérard, A., Glansdorff, N., Mergeay, M., Wiame, J.-M.: Control of the biosynthesis of carbamoylphosphate in Escherichia coli. J. molec. Biol. 14, 23–26 (1965)

    Google Scholar 

  • Piérard, A., Glansdorff, N., Yashphe, J.: Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Effects on carbamoylphosphate and pyrimidine biosynthesis and on uracil uptake. Molec. gen. Genet. 118, 235–245 (1972)

    Google Scholar 

  • Piérard, A., Grenson, M., Glansdorff, N., Wiame, J.-M.: A comparison of the organization of carbamoylphosphate synthesis in Saccharomyces cerevisiae and Escherichia coli, based on genetical and biochemical evidences. In: The enzymes of glutamine metabolism (ed. S. Prusiner and E. R. Stadtman), p. 483–503. New York: Academic Press 1973

    Google Scholar 

  • Piérard, A., Wiame, J.-M.: Regulation and mutation affecting a glutamine dependent formation of carbamylphosphate in Escherichia coli. Biochem. biophys. Res. Commun. 15, 76–81 (1964)

    Google Scholar 

  • Pinkus, M. L., Meister, A.: Identification of a reactive cystein residue at the glutamine binding site of carbamylphosphate synthetase. J. biol. Chem. 247, 6119–6127 (1972)

    Google Scholar 

  • Prozesky, O. M., Coetzee, J. N.: Linked transduction in Proteus mirabilis. Nature (Lond.) 209, 1262 (1966)

    Google Scholar 

  • Roepke, R. R., Mercer, F. E.: Lethal and sublethal effects of X rays on Escherichia coli as related to the yield of biochemical mutant. J. Bact. 54, 731–743 (1947)

    Google Scholar 

  • Syvanen, J. M., Roth, J. R.: Structural genes for catalytic and regulatory subunits of aspartate transcarbamylase. J. molec. Biol. 76, 363–368 (1973)

    Google Scholar 

  • Taylor, A. L., Trotter, C. D.: Linkage map of Escherichia coli strain K-12. Bact. Rev. 36, 504–524 (1972)

    Google Scholar 

  • Trotta, P. P., Burt, M. E., Haschenmeyer, R. H., Meister, A.: Reversible dissociation of carbamylphosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc. nat. Acad. Sci. (Wash.) 68, 2599–2603 (1971)

    Google Scholar 

  • Van Montagu, M., Leurs, C., Brachet, P., Thomas, R.: A set of amber mutants of bacteriophages lambda and MS2 suitable for the identification of suppressors. Mutation Res. 4, 698–700 (1967)

    Google Scholar 

  • Vyas, S., Maas, W. K.: Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Arch. Biochem. Biophys. 100, 542–546 (1963)

    Google Scholar 

  • Whitfield, H. J., Martin, R. G., Ames, B. N.: Classification of aminotransferase (C genes) mutants in the histidine operon. J. molec. Biol. 21, 335–355 (1966)

    Google Scholar 

  • Yan, Y., Demerec, M.: Genetic analysis of pyrimidine mutants of Salmonella typhimurium. Genetics 52, 643–651 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Maas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mergeay, M., Gigot, D., Beckmann, J. et al. Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K12. Molec. gen. Genet. 133, 299–316 (1974). https://doi.org/10.1007/BF00332706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332706

Keywords

Navigation