Skip to main content
Log in

Epileptic seizures and oxidative stress in a mouse model over-expressing spermine oxidase

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Several studies have demonstrated high polyamine levels in brain diseases such as epilepsy. Epilepsy is the fourth most common neurological disorder and affects people of all ages. Excitotoxic stress has been associated with epilepsy and it is considered one of the main causes of neuronal degeneration and death. The transgenic mouse line Dach-SMOX, with CD1 background, specifically overexpressing spermine oxidase in brain cortex, has been proven to be highly susceptible to epileptic seizures and excitotoxic stress induced by kainic acid. In this study, we analysed the effect of spermine oxidase over-expression in a different epileptic model, pentylenetetrazole. Behavioural evaluations of transgenic mice compared to controls showed a higher susceptibility towards pentylentetrazole. High-performance liquid chromatography analysis of transgenic brain from treated mice revealed altered polyamine content. Immunoistochemical analysis indicated a rise of 8-oxo-7,8-dihydro-2′-deoxyguanosine, demonstrating an increase in oxidative damage, and an augmentation of system x c as a defence mechanism. This cascade of events can be initially linked to an increase in protein kinase C alpha, as shown by Western blot. This research points out the role of spermine oxidase, as a hydrogen peroxide producer, in the oxidative stress during epilepsy. Moreover, Dach-SMOX susceptibility demonstrated by two different epileptic models strongly indicates this transgenic mouse line as a potential animal model to study epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amendola R, Cervelli M, Fratini E, Polticelli F, Sallustio DE, Mariottini P (2009) Spermine metabolism and anticancer therapy. Curr Cancer Drug Targets 9:118–130

    CAS  PubMed  Google Scholar 

  • Amendola R, Cervelli M, Fratini E, Sallustio DE, Tempera G, Ueshima T, Mariottini P, Agostinelli E (2013) Reactive oxygen species spermine metabolites generated from amine oxidases and radiation represent a therapeutic gain in cancer treatments. Int J Oncol 43:813–820

    CAS  PubMed  Google Scholar 

  • Amendola R, Cervelli M, Tempera G, Fratini E, Varesio L, Mariottini P, Agostinelli E (2014) Spermine metabolism and radiation-derived reactive oxygen species for future therapeutic implications in cancer: an additive or adaptive response. Amino Acids 46:487–498

    CAS  PubMed  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 26:2256–2263

    Google Scholar 

  • Binder DK, Oshio K, Ma T, Verkman AS, Manley GT (2004) Increased seizure threshold in mice lacking aquaporin-4 water channels. Neuro Rep 15:259–262

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Bridges RJ, Natale NR, Patel SA (2012) System xc cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165:20–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckingham SC, Robel S (2013) Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem Int 63:696–701

    CAS  PubMed  Google Scholar 

  • Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, Sontheimer H (2011) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17:1269–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capone C, Cervelli M, Angelucci E, Colasanti M, Macone A, Mariottini P, Persichini T (2013) A role for spermine oxidase as a mediator of reactive oxygen species production in HIV-Tat-induced neuronal toxicity. Free Radic Biol Med 63:99–107

    CAS  PubMed  Google Scholar 

  • Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri Aristides III, Coballase-Urrutia E, Cárdenas-Rodríguez N (2015) Overview of Nrf2 as therapeutic Target in epilepsy. Int J Mol 16:18348–18367

    CAS  Google Scholar 

  • Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    CAS  PubMed  Google Scholar 

  • Ceci R, Duranti G, Leonetti A, Pietropaoli S, Spinozzi F, Marcocci L, Amendola R, Cecconi F, Sabatini S, Mariottini P, Cervelli M (2017) Adaptive responses of heart and skeletal muscle to spermine oxidase overexpression: evaluation of a new transgenic mouse model. Free Radic Biol Med 103:216–225

    CAS  PubMed  Google Scholar 

  • Cervelli M, Fratini E, Amendola R, Bianchi M, Signori E, Ferraro E, Lisi A, Federico R, Marcocci L, Mariottini P (2009) Increased spermine oxidase (SMO) activity as a novel differentiation marker of myogenic C2C12 cells. Int J Biochem Cell Biol 41:934–944

    CAS  PubMed  Google Scholar 

  • Cervelli M, Bellavia G, Fratini E, Amendola R, Polticelli F, Barba M, Federico R, Signore F, Gucciardo G, Grillo R, Woster PM, Casero RA Jr, Mariottini P (2010) Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm. BMC Cancer 10:555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervelli M, Amendola R, Polticelli F, Mariottini P (2012) Spermine oxidase: ten years after. Amino Acids 42:441–450

    CAS  PubMed  Google Scholar 

  • Cervelli M, Salvi D, Polticelli F, Amendola R, Mariottini P (2013a) Structure-function relationships in the evolutionary framework of spermine oxidase. J Mol Evol 76:365–370

    CAS  PubMed  Google Scholar 

  • Cervelli M, Bellavia G, D’Amelio M, Cavallucci V, Moreno S, Berger J, Nardacci R, Marcoli M, Maura G, Piacentini M, Amendola R, Cecconi F, Mariottini P (2013b) A new transgenic mouse model for studying the neurotoxicity of spermine oxidase dosage in the response to excitotoxic injury. PLoS One 8:e64810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervelli M, Pietropaoli S, Signore F, Amendola R, Mariottini P (2014a) Polyamines metabolism and breast cancer: state of the art and perspectives. Breast Cancer Res Treat 148:233–248

    CAS  PubMed  Google Scholar 

  • Cervelli M, Angelucci E, Germani F, Amendola R, Mariottini P (2014b) Inflammation, carcinogenesis and neurodegeneration studies in transgenic animal models for polyamine research. Amino Acids 46:521–530

    CAS  PubMed  Google Scholar 

  • Cervelli M, Leonetti A, Cervoni L, Ohkubo S, Xhani M, Stano P, Federico R, Polticelli F, Mariottini P, Agostinelli E (2016) Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase. Amino Acids 48:2283–2291

    CAS  PubMed  Google Scholar 

  • Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, Berretta N, Mercuri N, D’Amelio M, Maura G, Mariottini P, Voci A, Marcoli M, Cervelli M (2016) Astrocyte-dependent vulnerability to excitotoxicity in spermine oxidase-overexpressing mouse. Neuro Mol Med 18:50–68

    CAS  Google Scholar 

  • Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T, Delgado AG, Wroblewski LE, Piazuelo MB, Yan F, Israel DA, Casero RA Jr, Correa P, Gobert AP, Polk DB, Peek RM Jr, Wilson KT (2011) Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 141:1696–1708

    CAS  PubMed  Google Scholar 

  • Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162–171

    CAS  PubMed  Google Scholar 

  • Claycomb RJ, Hewett SJ, Hewett JA (2011) Prophylactic, prandial rofecoxib treatment lacks efficacy against acute PTZ-induced seizure generation and kindling acquisition. Epilepsia 52:273–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59:1181–1189

    PubMed  Google Scholar 

  • Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163–221

    CAS  PubMed  Google Scholar 

  • Doi T, Ueda Y, Nagatomo K, Willmore LJ (2009) Role of glutamate and GABA transporters in development of pentylenetetrazol-kindling. Neurochem Res 34:1324–1331

    CAS  PubMed  Google Scholar 

  • Elger CE, Schmidt D (2008) Modern management of epilepsy: a practical approach. Epilepsy Behav 12:501–539

    PubMed  Google Scholar 

  • Erdoğan F, Gölgeli A, Arman F, Ersoy AO (2004) The effects of pentylenetetrazole-induced status epilepticus on behavior, emotional memory, and learning in rats. Epilepsy Behav 5:388–393

    PubMed  Google Scholar 

  • Giorgi O, Carboni G, Frau V, Orlandi M, Valentini V, Feldman A, Corda MG (1996) Anticonvulsant effect of felbamate in the pentylenetetrazole kindling model of epilepsy in the rat. Naunyn Schmiedebergs Arch Pharmacol 354:173–178

    CAS  PubMed  Google Scholar 

  • Goodwin AC, Jadallah S, Toubaji A, Lecksell K, Hicks JL, Kowalski J, Bova GS, De Marzo AM, Netto GJ, Casero RA Jr (2008) Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues. Prostate 68:766–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HC, Nguyen T, Pickett CB (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. PNAS 97:12475–12480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH (2001) Pentylenetetrazol-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J Pharmacol Exp Ther 298:986–995

    CAS  PubMed  Google Scholar 

  • Kauppinen RA, Alhonen LI (1995) Transgenic animals as models in the study of the neurobiological role of polyamines. Progr Neurobiol 47:545–563

    CAS  Google Scholar 

  • Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Massie KA, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    CAS  PubMed  Google Scholar 

  • Lüttjohann A, Fabene PF, van Luijtelaar G (2009) A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav 98:579–586

    PubMed  Google Scholar 

  • Mastrantonio R, Cervelli M, Pietropaoli S, Mariottini P, Colasanti M, Persichini T (2016) HIV-Tat induces the Nrf2/ARE pathway through NMDA receptor-elicited spermine oxidase activation in human neuroblastoma cells. PLoS One 11:e0149802

    PubMed  PubMed Central  Google Scholar 

  • Naseer MI, Ullah I, Al-Qahtani MH, Karim S, Ullah N, Ansari SA, Kim MO, Bibi F (2013) Decreased GABABR expression and increased neuronal cell death in developing rat brain after PTZ-induced seizure. Neurol Sci 34:497–503

    PubMed  Google Scholar 

  • Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radical Biol Med 37:1951–1962

    CAS  Google Scholar 

  • Pietropaoli S, Leonetti A, Cervetto C, Venturini A, Mastrantonio R, Baroli G, Persichini T, Colasanti M, Maura G, Marcoli M, Mariottini P, Cervelli M (2018) Glutamate excitotoxicity linked to spermine oxidase overexpression. Mol Neurobiol 55:7259–7270

    CAS  PubMed  Google Scholar 

  • Polticelli F, Salvi D, Mariottini P, Amendola R, Cervelli M (2012) Molecular evolution of the polyamine oxidase gene family in Metazoa. BMC Evol Biol 12:90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Psarropoulou C, Matsokis N, Angelatou F, Kostopoulos G (1994) Pentylenetetrazol-induced seizures decrease gamma-aminobutyric acid-mediated recurrent inhibition and enhance adenosine-mediated depression. Epilepsia 35:12–19

    CAS  PubMed  Google Scholar 

  • Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015:745613

    PubMed  PubMed Central  Google Scholar 

  • Qaisiya M, Zabetta CDC, Bellarosa C, Tiribelli C (2014) Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal 26:512–520

    CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: II motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    CAS  PubMed  Google Scholar 

  • Rauca C, Zerbe R, Jantze H (1999) Formation of free hydroxyl radicals after pentylenetetrazol-induced seizure and kindling. Brain Res 847:347–351

    CAS  PubMed  Google Scholar 

  • Rea G, Bocedi A, Cervelli M (2004) Question: what is the biological function of the polyamines? IUBMB Life 56:167–169

    PubMed  Google Scholar 

  • Sajadian A, Esteghamat S, Karimzadeh F, Eshaghabadi A, Sieg F, Speckmann EJ, Meuth S, Seidenbecher T, Budde T, Gorji A (2015) Anticonvulsant effect of neural regeneration peptide 2945 on pentylenetetrazol-induced seizures in rats. Neuropeptides 49:15–23

    CAS  PubMed  Google Scholar 

  • Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458

    CAS  PubMed  Google Scholar 

  • Tavladoraki P, Cervelli M, Antonangeli F, Minervini G, Stano P, Federico R, Mariottini P, Polticelli F (2011) Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids 40:1115–1126

    CAS  PubMed  Google Scholar 

  • Tremblay R, Hewitt K, Lesiuk H, Mealing G, Morley P, Durkin JP (1999) Evidence that brain-derived neurotrophic factor neuroprotection is linked to its ability to reverse the NMDA-induced inactivation of protein kinase C in cortical neurons. J Neurochem 72:102–111

    CAS  PubMed  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 5:2924–2932

    Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325:289–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (2019) Epilepsy Fact sheet. http://www.who.int/mediacentre/factsheets/fs999/en/index.html

  • Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA, Strauss KI (2010) Polyamine catabolism is enhanced after traumatic brain injury. J Neurotrauma 27:515–525

    PubMed  PubMed Central  Google Scholar 

  • Zahedi K, Barone S, Destefano-Shields C, Brooks M, Murray-Stewart T, Dunworth M, Li W, Doherty JR, Hall MA, Smith RD, Cleveland JL, Casero RA Jr, Soleimani M (2017) Activation of endoplasmic reticulum stress response by enhanced polyamine catabolism is important in the mediation of cisplatin-induced acute kidney injury. PLoS One 12:e0184570

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Roma Tre University contribution to the laboratories (CAL/2017 and CAL/2018) to M.C. and P.M and by the Ph.D. School (Department of Science) contribution 2017 to A.L. and S.P and 2018 to G.B. The authors wish to thank Mrs Rosetta Ponzo for the revision of the English text and Prof. G. Maura (University of Genova, Italy) for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Cervelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experiments were carried out in accordance with the ethical guidelines for the conduction of animal research of the European Community’s Council Directive 2010/63/EU. Formal approval of these experiments was obtained from the Italian Ministry of Health with the approved protocol N°964/2015-PR.

Additional information

Handling editor: E. Agostinelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonetti, A., Baroli, G., Fratini, E. et al. Epileptic seizures and oxidative stress in a mouse model over-expressing spermine oxidase. Amino Acids 52, 129–139 (2020). https://doi.org/10.1007/s00726-019-02749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02749-8

Keywords

Navigation