Skip to main content
Log in

Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2′-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system xc transporter, a Nrf-2 target, was observed. Sulfasalazine, a system xc transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rea G, Bocedi A, Cervelli M (2004) Question: what is the biological function of the polyamines? IUBMB Life 56(3):167–169. https://doi.org/10.1080/15216540410001673996

    Article  PubMed  CAS  Google Scholar 

  2. Cervelli M, Angelucci E, Germani F, Amendola R, Mariottini P (2014) Inflammation, carcinogenesis and neurodegeneration studies in transgenic animal models for polyamine research. Amino Acids 46(3):521–530. https://doi.org/10.1007/s00726-013-1572-3

    Article  PubMed  CAS  Google Scholar 

  3. Murray-Stewart T, Sierra JC, Piazuelo MB, Mera RM, Chaturvedi R, Bravo LE, Correa P, Schneider BG et al (2016) Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer. Oncogene 35(42):5480–5488. https://doi.org/10.1038/onc.2016.91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Paschen W (1991) Polyamine metabolism in reversible cerebral ischemia. Cerebrovasc Brain Metab Rev 4:59–88

    Google Scholar 

  5. Henley CM, Muszynski C, Cherian L, Robertson CS (1996) Activation of ornithine decarboxylase and accumulation of putrescine after traumatic brain injury. J Neurotrauma 13(9):487–496. https://doi.org/10.1089/neu.1996.13.487

    Article  PubMed  CAS  Google Scholar 

  6. Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA, Strauss KI (2010) Polyamine catabolism is enhanced after traumatic brain injury. J Neurotrauma 27(3):515–525. https://doi.org/10.1089/neu.2009.1097

    Article  PubMed  PubMed Central  Google Scholar 

  7. Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325(2):289–297. https://doi.org/10.1042/bj3250289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(3):39–51. https://doi.org/10.1006/bbrc.2000.2601

    Article  PubMed  CAS  Google Scholar 

  9. Polticelli F, Salvi D, Mariottini P, Amendola R, Cervelli M (2012) Molecular evolution of the polyamine oxidase gene family in Metazoa. BMC Evol Biol 12(1):90. https://doi.org/10.1186/1471-2148-12-90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cervelli M, Salvi D, Polticelli F, Amendola R, Mariottini P (2013) Structure-function relationships in the evolutionary framework of spermine oxidase. J Mol Evol 76(6):365–370. https://doi.org/10.1007/s00239-013-9570-3

    Article  PubMed  CAS  Google Scholar 

  11. Cervelli M, Bellavia G, Fratini E, Amendola R, Polticelli F, Barba M, Rodolfo F, Signore F et al (2010) Spermine oxidase (SMOX) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm. BMC Cancer 10(1):555–564. https://doi.org/10.1186/1471-2407-10-555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cervelli M, Amendola R, Polticelli F, Mariottini P (2012) Spermine oxidase: Ten years after. Amino Acids 42(2-3):441–450. https://doi.org/10.1007/s00726-011-1014-z

    Article  PubMed  CAS  Google Scholar 

  13. Chaturvedi R, de Sablet T, Peek RM, Wilson KT (2012) Spermine oxidase, a polyamine catabolic enzyme that links Helicobacter pylori CagA and gastric cancer risk. Gut Microbes 3(1):48–56. https://doi.org/10.4161/gmic.19345

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tavladoraki P, Cervelli M, Antonangeli F, Minervini G, Stano P, Federico R, Mariottini P, Polticelli F (2011) Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids 40(4):1115–1126. https://doi.org/10.1007/s00726-010-0735-8

    Article  PubMed  CAS  Google Scholar 

  15. Cervelli M, Leonetti A, Cervoni L, Ohkubo S, Xhani M, Stano P, Federico R, Polticelli F et al (2016) Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase. Amino Acids 48(10):2283–2291. https://doi.org/10.1007/s00726-016-2273-5

    Article  PubMed  CAS  Google Scholar 

  16. Ceci R, Duranti G, Leonetti A, Pietropaoli S, Spinozzi F, Marcocci L, Amendola R, Cecconi F et al (2017) Adaptive responses of heart and skeletal muscle to spermine oxidase overexpression: evaluation of a new transgenic mouse model. Free Radic Biol Med 103:216–225. https://doi.org/10.1016/j.freeradbiomed.2016.12.040

    Article  PubMed  CAS  Google Scholar 

  17. Cervelli M, Bellavia G, D'Amelio M, Cavallucci V, Moreno S, Berger J, Nardacci R, Marcoli M et al (2013) A new transgenic mouse model for studying the neurotoxicity of spermine oxidase dosage in the response to excitotoxic injury. PLoS One 8(6):e64810. https://doi.org/10.1371/journal.pone.0064810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Uemura T, Watanabe K, Ishibashi M, Saiki R, Kuni K, Nishimura K, Toida T, Kashiwagi K et al (2016) Aggravation of brain infarction through an increase in acrolein production and a decrease in glutathione with aging. Biochem Biophys Res Commun 473(2):630–635. https://doi.org/10.1016/j.bbrc.2016.03.137

    Article  PubMed  CAS  Google Scholar 

  19. Pellegrini-Giampietro DE (2003) An activity-dependent spermine-mediated mechanism that modulates glutamate transmission. Trends Neurosci 26(1):9–11. https://doi.org/10.1016/S0166-2236(02)00004-8

    Article  PubMed  CAS  Google Scholar 

  20. Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, Berretta N, Mercuri N et al (2016) Astrocyte-dependent vulnerability to excitotoxicity in spermine oxidase-overexpressing mouse. NeuroMolecular Med 18(1):50–68. https://doi.org/10.1007/s12017-015-8377-3

    Article  PubMed  CAS  Google Scholar 

  21. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. https://doi.org/10.1124/pr.109.002451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45(3):250–265. https://doi.org/10.1016/j.brainresrev.2004.04.004

    Article  PubMed  CAS  Google Scholar 

  23. Hediger MA (1999) Glutamate transporters in kidney and brain. Am J Phys 277:487–492

    Google Scholar 

  24. Rosenblum LT, Shamamandri-Markandaiah S, Ghosh B, Foran E, Lepore AC, Pasinelli P, Trotti D (2017) Mutation of the caspase-3 cleavage site in the astroglial glutamate transporter EAAT2 delays disease progression and extends lifespan in the SOD1-G93A mouse model of ALS. Exp Neurol 292:145–153. https://doi.org/10.1016/j.expneurol.2017.03.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bridges RJ, Natale NR, Patel SA (2012) System xc cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165(1):20–34. https://doi.org/10.1111/j.1476-5381.2011.01480.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074

    Article  PubMed  CAS  Google Scholar 

  27. Mastrantonio R, Cervelli M, Pietropaoli S, Mariottini P, Colasanti M, Persichini T (2016) HIV-tat induces the Nrf2/ARE pathway through NMDA receptor-elicited spermine oxidase activation in human neuroblastoma cells. PLoS One 11(2):e0149802. https://doi.org/10.1371/journal.pone.0149802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294. https://doi.org/10.1016/0013-4694(72)90177-0

    Article  PubMed  CAS  Google Scholar 

  29. Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, Sontheimer H (2011) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17(10):1269–1274. https://doi.org/10.1038/nm.2453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  31. Cervetto C, Mazzotta MC, Frattaroli D, Alloisio S, Nobile M, Maura G, Marcoli M (2012) Calmidazolium selectively inhibits exocytotic glutamate release evoked by P2X7 receptor activation. Neurochem Int 60(8):768–772. https://doi.org/10.1016/j.neuint.2012.02.034

    Article  PubMed  CAS  Google Scholar 

  32. Cervetto C, Venturini A, Passalacqua M, Guidolin D, Genedani S, Fuxe K, Borroto-Esquela DO, Cortelli P et al (2016) A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochem 140(2):268–279. https://doi.org/10.1111/jnc.13885

    Article  PubMed  CAS  Google Scholar 

  33. Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G et al (2015) Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 99:396–407. https://doi.org/10.1016/j.neuropharm.2015.08.011

    Article  PubMed  CAS  Google Scholar 

  34. Cervetto C, Maura M, Marcoli M (2010) Inhibition of presynaptic release-facilitatory kainate autoreceptors by extracellular cyclic GMP. J Pharmacol Exp Ther 332(1):210–219. https://doi.org/10.1124/jpet.109.154955

    Article  PubMed  CAS  Google Scholar 

  35. Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ (2013) Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biol Psychiatry 73(6):574–582. https://doi.org/10.1016/j.biopsych.2012.09.020

    Article  PubMed  CAS  Google Scholar 

  36. Cervelli M, Bellini A, Bianchi M, Marcocci L, Nocera S, Polticelli F, Federico R, Amendola R et al (2004) Mouse spermine oxidase gene splice variants. Nuclear subcellular localization of a novel active isoform. Eur J Biochem 271(4):760–770. https://doi.org/10.1111/j.1432-1033.2004.03979.x

    Article  PubMed  CAS  Google Scholar 

  37. Pegg (2008) Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294(6):E995–1010. https://doi.org/10.1152/ajpendo.90217.2008

    Article  PubMed  CAS  Google Scholar 

  38. Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN et al (2012) Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 94(9):1876–1883. https://doi.org/10.1016/j.biochi.2012.04.023

    Article  PubMed  CAS  Google Scholar 

  39. Balkhi HM, Gul T, Banday MZ, Haq E (2014) Glutamate excitotoxicity: an insight into the mechanism. Int J Adv Res 2:361–373

    CAS  Google Scholar 

  40. De Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59(8):1181–1189. https://doi.org/10.1002/glia.21113

    Article  PubMed  Google Scholar 

  41. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 5:2924–2932

    Article  Google Scholar 

  42. Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19(8):328–333. https://doi.org/10.1016/S0165-6147(98)01230-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Roma Tre University contribution to the laboratories [CAL/2016] to M.C. and P.M. and by the Ph.D. School (Department of Science) contribution 2016 to S.P. and A.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Cervelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietropaoli, S., Leonetti, A., Cervetto, C. et al. Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression. Mol Neurobiol 55, 7259–7270 (2018). https://doi.org/10.1007/s12035-017-0864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0864-0

Keywords

Navigation