Skip to main content
Log in

Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 ) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS15NO were measured by liquid chromatography–tandem mass spectrometry (LC–MS/MS). cGMP was determined by LC–MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS15NO from 15N-nitrite. In the presence of l-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASPS239 were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AlbSNO:

S-Nitrosoalbumin

BSA:

Bovine serum albumin

CA:

Carbonic anhydrase

cGMP:

Cyclic guanosine monophosphate

CVD:

Cardiovascular disease

CysSH:

Reduced l-cysteine

CysSNO:

S-Nitrosocysteine

GC:

Gas chromatography

GSH:

Glutathione

GSNO:

S-Nitrosoglutathione

GTP:

Guanosine triphosphate

HbSNO:

S-Nitrosohemoglobin

HMM:

High-molecular-mass

IS:

Internal standard

LC:

Liquid chromatography

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

LMM:

Low-molecular-mass

NO:

Nitric oxide

NR:

Nitrate reductase

PKG:

Protein kinase

P-VASPS239 :

VASP phosphorylated at Ser239

RSNO:

S-Nitrosothiol

sGC:

Soluble guanylyl cyclase

SIDM:

Stable-isotope dilution mass spectrometry

SNP:

Sodium nitroprusside

VASP:

Vasodilator-stimulated phosphoprotein

References

  • Aamand R, Dalsgaard T, Jensen FB, Simonsen U, Roepstorff A, Fago A (2009) Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol Heart Circ Physiol 297:H2068–H2074

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk K, Prémont-Schwarz M, Pines D, Pines E, Nibbering ET (2009) Real-time observation of carbonic acid formation in aqueous solution. Science 326:1690–1694

    Article  CAS  PubMed  Google Scholar 

  • Alvarez BV, Quon AL, Mullen J, Casey JR (2013) Quantification of carbonic anhydrase gene expression in ventricle of hypertrophic and failing human heart. BMC Cardiovasc Disord 13:2. doi:10.1186/1471-2261-13-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beste KY, Burhenne H, Kaever V, Stasch J, Seifert R (2012) Nucleotidyl cyclase activity of soluble guanylyl cyclase α1β1. Biochemistry (NY) 51:194–204

    Article  CAS  Google Scholar 

  • Böhmer A, Mitschke A, Reib A, Gutzki FM, Tsikas D (2012) 18O-Labeled nitrous acid and nitrite: synthesis, characterization, and oxyhemoglobin-catalyzed oxidation to 18O-labeled nitrate. Anal Biochem 421:770–772

    Article  PubMed  Google Scholar 

  • Burkhart JM, Vaudel M, Gambaryan S et al (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120:e73–e822012

    Article  CAS  PubMed  Google Scholar 

  • Chai YC, Jung CH, Lii CK et al (1991) Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III; characterization of S-thiolation and dethiolation reactions. Arch Biochem Biophys 284:270–278

    Article  CAS  PubMed  Google Scholar 

  • Chobanyan-Jürgens K, Schwarz A, Böhmer A et al (2012) Renal carbonic anhydrases are involved in the reabsorption of endogenous nitrite. Nitric Oxide 26:126–131

    Article  PubMed  Google Scholar 

  • de Belder AJ, MacAllister R, Radomski MW, Moncada S, Vallance PJ (1994) Effects of S-nitroso-glutathione in the human forearm circulation: evidence for selective inhibition of platelet activation. Cardiovasc Res 28:691–694

    Article  PubMed  Google Scholar 

  • Gambaryan S, Tsikas D (2015) A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite. Amino Acids 47:1779–1793

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan S, Kobsar A, Hartmann S et al (2008) NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemost 6:1376–1384

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Xuan C, Yang Q, Liu XC, Liu ZG, He GW (2013) Identification of altered plasma proteins by proteomic study in valvular heart diseases and the potential clinical significance. PLoS One 8:e72111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giustarini D, Milzani A, Dalle-Donne I, Rossi R (2007) Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies. J Chromatogr B 851:124–139

    Article  CAS  Google Scholar 

  • Gladwin MT, Raat NJ, Shiva S et al (2006) Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol 291:H2026–H2035

    Article  CAS  PubMed  Google Scholar 

  • Hanff E, Böhmer A, Jordan J, Tsikas D (2014) Stable-isotope dilution LC–MS/MS measurement of nitrite in human plasma after its conversion to S-nitrosoglutathione. J Chromatogr B 970:44–52

    Article  CAS  Google Scholar 

  • Ho C, Sturtevant JM (1963) The kinetics of the hydration of carbon dioxide at 25 degrees. J Biol Chem 238:3499–3501

    CAS  PubMed  Google Scholar 

  • Keimer R, Stutzer FK, Tsikas D, Troost R, Gutzki FM, Frölich JC (2003) Lack of oxidative stress during sustained therapy with isosorbide dinitrate and pentaerythrityl tetranitrate in healthy humans: a randomized, double-blind crossover study. J Cardiovasc Pharmacol 41:284–292

    Article  CAS  PubMed  Google Scholar 

  • Lesnichin SB, Shenderovich IG, Muljati T, Silverman D, Limbach HH (2011) Intrinsic proton-donating power of zinc-bound water in a carbonic anhydrase active site model estimated by NMR. J Am Chem Soc 133:11331–11338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Whorton AR (2005) Identification of stereoselective transporters for S-nitroso-l-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem 280:20102–20110

    Article  CAS  PubMed  Google Scholar 

  • Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-Nitrosylation in cardiovascular signaling. Circ Res 106:633–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Waijh N, Liu X et al (2015) Mechanisms of human erythrocytic bioactivation of nitrite. J Biol Chem 290:1281–1294

    Article  CAS  PubMed  Google Scholar 

  • MacAllister RJ, Calver AL, Riezebos J, Collier J, Vallance P (1995) Relative potency and arteriovenous selectivity of nitrovasodilators on human blood vessels: an insight into the targeting of nitric oxide delivery. J Pharmacol Exp Ther 273:154–160

    CAS  PubMed  Google Scholar 

  • Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  CAS  PubMed  Google Scholar 

  • Monti SM, Supuran CT, De Simone G (2013) Anticancer carbonic anhydrase inhibitors: a patent review (2008–2013). Expert Opin Ther Pat 23:737–749

    Article  CAS  PubMed  Google Scholar 

  • Palmer LA, Doctor A, Chhabra P, Sheram ML, Laubach VE, Karlinsey MZ, Forbes MS, Macdonald T, Gaston B (2007) S-Nitrosothiols signal hypoxia-mimetic vascular pathology. J Clin Invest 117:2592–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH (2005) Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA 293:1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Sandmann J, Schwedhelm KS, Tsikas D (2005) Specific transport of S-nitrosocysteine in human red blood cells: implications for formation of S-nitrosothiols and transport of NO bioactivity within the vasculature. FEBS Lett 579:4119–4124

    Article  CAS  PubMed  Google Scholar 

  • Schneider JY, Rothmann S, Schröder F, Langen J, Lücke T, Mariotti F, Huneau JF, Frölich JC, Tsikas D (2015) Effects of chronic oral l-arginine administration on the l-arginine/NO pathway in patients with peripheral arterial occlusive disease or coronary artery disease: l-Arginine prevents renal loss of nitrite, the major NO reservoir. Amino Acids 47:1961–1974

    Article  CAS  PubMed  Google Scholar 

  • Tafreshi NK, Lloyd MC, Bui MM, Gillies RJ, Morse DL (2014) Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. Subcell Biochem 75:221–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takakura M, Yokomizo A, Tanaka Y, Kobayashi M, Jung G, Banno M, Sakuma T, Imada K, Oda Y, Kamita M, Honda K, Yamada T, Naito S, Ono M (2012) Carbonic anhydrase I as a new plasma biomarker for prostate cancer. ISRN Oncol 2012:768190

    PubMed  PubMed Central  Google Scholar 

  • Truppo E, Supuran CT, Sandomenico A et al (2012) Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett 22:1560–1564

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Sandmann J, Rossa S, Gutzki FM, Frölich JC (1999a) Investigations of S-transnitrosylation reactions between low- and high-molecular-weight S-nitroso compounds and their thiols by high-performance liquid chromatography and gas chromatography-mass spectrometry. Anal Biochem 270:231–241

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Ikic M, Tewes KS, Raida M, Frölich JC (1999b) Inhibition of platelet aggregation by S-nitroso-cysteine via cGMP-independent mechanisms: evidence of inhibition of thromboxane A2 synthesis in human blood platelets. FEBS Lett 442:162–166

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Sandmann J, Denker K, Frölich JC (2000) Is S-nitrosoglutathione formed in nitric oxide synthase incubates? FEBS Lett 483:83–84

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Denker K, Frölich JC (2001) Artifactual-free analysis of S-nitrosoglutathione and S-nitroglutathione by neutral-pH, anion-pairing, high-performance liquid chromatography. Study on peroxynitrite-mediated S-nitration of glutathione to S-nitroglutathione under physiological conditions. J Chromatogr A 915:107–116

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Sandmann J, Frölich JC (2002) Measurement of S-nitrosoalbumin by gas chromatography-mass spectrometry. III. Quantitative determination in human plasma after specific conversion of the S-nitroso group to nitrite by cysteine and Cu2+ via intermediate formation of S-nitrosocysteine and nitric oxide. J Chromatogr B 772:335–346

    Article  CAS  Google Scholar 

  • Tsikas D, Schwarz A, Stichtenoth DO (2010) Simultaneous measurement of [15N]nitrate and [15N]nitrite enrichment and concentration in urine by gas chromatography mass spectrometry as pentafluorobenzyl derivatives. Anal Chem 82:2585–2587

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Schmidt M, Böhmer A, Zoerner AA, Gutzki FM, Jordan J (2013a) UPLC-MS/MS measurement of S-nitrosoglutathione (GSNO) in human plasma solves the S-nitrosothiol concentration enigma. J Chromatogr B 927:147–157

    Article  CAS  Google Scholar 

  • Tsikas D, Sutmöller K, Maassen M et al (2013b) Even and carbon dioxide independent distribution of nitrite between plasma and erythrocytes of healthy humans at rest. Nitric Oxide 31:31–37

    Article  CAS  PubMed  Google Scholar 

  • Wang ST, Chen HW, Sheen LY, Li CK (1997) Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione S-transferase isozymes in rat hepatocytes. J Nutr 127:2135–2141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. R. Seifert from the Institute of Pharmacology and Prof. V. Kaever from the Core Unit Metabolomics, both Hannover Medical School, for providing us with the recombinant soluble guanylyl cyclase and for the LC–MS/MS analysis of cGMP. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grant TS60/4-1 (to D.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Tsikas.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study on human platelets and human erythrocytes was approved by the Ethics Committee of the Hannover Medical School.

Additional information

E. Hanff and A. Böhmer have contributed equally to this article and are both first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanff, E., Böhmer, A., Zinke, M. et al. Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets. Amino Acids 48, 1695–1706 (2016). https://doi.org/10.1007/s00726-016-2234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2234-z

Keywords

Navigation