Skip to main content
Log in

A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite?

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The NO/sGC/cGMP/PKG system is one of the most powerful mechanisms responsible for platelet inhibition. In numerous publications, expression of functional NO synthase (NOS) in human and mouse platelets has been reported. Constitutive and inducible NOS isoforms convert l-arginine to NO and l-citrulline. The importance of this pathway in platelets and in endothelial cells for the regulation of platelet function is discussed since decades. However, there are serious doubts in the literature concerning both expression and functionality of NOS in platelets. In this review, we aim to present and critically evaluate recent data concerning NOS expression and function in platelets, and to especially emphasise potential pitfalls of detection of NOS proteins and measurement of NOS activity. Prevailing analytical problems are probably the main sources of contradictory data on occurrence, activity and function of NOS in platelets. In this review we also address issues of how these problems can be resolved. NO donors including organic nitrites (RONO) and organic nitrate (RONO2) are inhibitors of platelet activation. Endogenous inorganic nitrite (NO2 ), the product of NO autoxidation, and exogenous inorganic nitrite are increasingly investigated as NO donors in the circulation. The role of platelets in the generation of NO from nitrite is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CA:

Carbonic anhydrase

DAF:

Diaminofluorescein

DAN:

Diaminonaphthalene

ECNICI:

Electron-capture negative-ion chemical ionization

EI:

Electron ionization

GC:

Gas chromatography

sGC:

Soluble guanylyl cyclase

cGMP:

Cyclic guanosine monophosphate

IP:

Immunoprecipitation

LOD:

(Lower) limit of detection

LOQ:

(Lower) limit of quantitation

MS:

Mass spectrometry

NAT:

Naphthotriazol

NO:

Nitric oxide

NOS:

Nitric oxide synthase

eNOS:

Endothelial NOS

iNOS:

Inducible NOS

nNOS:

Neuronal NOS

PDE:

Phosphodiesterase

PFB:

Pentafluorobenzyl

PFB-Br:

Pentafluorobenzyl bromide

PKG:

cGMP-dependent protein kinase

RSD:

Relative standard deviation

SIM:

Selected-ion monitoring

VASP:

Vasodilator stimulated phosphoprotein

WF/R:

von Wildebrandt factor/ristocetin

References

  • Aamand R, Dalsgaard T, Jensen FB, Simonsen U, Roepstorff A, Fago A (2009) Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol Heart Circ Physiol 297:H2068–H2074

    Article  CAS  PubMed  Google Scholar 

  • Akrawinthawong K, Park JW, Piknova B, Sibmooh N, Fucharoen S, Schechter AN (2014) A flow cytometric analysis of the inhibition of platelet reactivity due to nitrite reduction by deoxygenated erythrocytes. PLoS One 9:e92435

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alexandru N, Popov D, Dragan E, Andrei E, Georgescu A (2011) Platelet activation in hypertension associated with hypercholesterolemia: effects of irbesartan. J Thromb Haemost 9:173–184

    Article  CAS  PubMed  Google Scholar 

  • Anfossi G, Massucco P, Mattiello L, Balbo A, Russo I, Doronzo G, Rolle L, Ghigo D, Fontana D, Bosia A, Trovati M (2002a) Insulin influences the nitric oxide cyclic nucleotide pathway in cultured human smooth muscle cells from corpus cavernosum by rapidly activating a constitutive nitric oxide synthase. Eur J Endocrinol 147:689–700

    Article  CAS  PubMed  Google Scholar 

  • Anfossi G, Russo I, Massucco P, Mattiello L, Cavalot F, Balbo A, Trovati M (2002b) Adenosine increases human platelet levels of cGMP through nitric oxide: possible role in its antiaggregating effect. Thromb Res 105:71–78

    Article  CAS  PubMed  Google Scholar 

  • Anfossi G, Russo I, Massucco P, Mattiello L, Trovati M (2002c) Catecholamines, via beta-adrenoceptors, increase intracellular concentrations of 3′,5′-cyclic guanosine monophosphate (cGMP) through nitric oxide in human platelets. Thromb Haemost 87:539–540

    CAS  PubMed  Google Scholar 

  • Apostoli GL, Solomon A, Smallwood MJ, Winyard PG, Emerson M (2014) Role of inorganic nitrate and nitrite in driving nitric oxide-cGMP-mediated inhibition of platelet aggregation in vitro and in vivo. J Thromb Haemost 12:1880–1889

    Article  CAS  PubMed  Google Scholar 

  • Aytekin M, Aulak KS, Haserodt S, Chakravarti R, Cody J, Minai OA, Dweik RA (2012) Abnormal platelet aggregation in idiopathic pulmonary arterial hypertension: role of nitric oxide. Am J Physiol Lung Cell Mol Physiol 302:L512–L520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balashova N, Chang FJ, Lamothe M, Sun Q, Beuve A (2005) Characterization of a novel type of endogenous activator of soluble guanylyl cyclase. J Biol Chem 280:2186–2196

    Article  CAS  PubMed  Google Scholar 

  • Barilli A, Visigalli R, Rotoli BM, Bussolati O, Gazzola GC, Parolari A, Dall´Asta V (2012) Radiochemical high-performance liquid chromatography detection of arginine metabolism in human endothelial cells. Anal Biochem 424:156–161

    Article  CAS  PubMed  Google Scholar 

  • Belloni F, Turpini R (1957) Presence of carbonic anhydrase in human platelets. Haematologica 42:217–225

    CAS  PubMed  Google Scholar 

  • Bergandi L, Cordero M, Anselmino M, Ferraro G, Ravera L, Dalmasso P, Moiraghi C, Trevi GP, Ghigo D, Bosia A, Bergerone S (2010) Altered nitric oxide/cGMP platelet signaling pathway in platelets from patients with acute coronary syndromes. Clin Res Cardiol 99:557–564

    Article  CAS  PubMed  Google Scholar 

  • Birschmann I, Mietner S, Dittrich M, Pfrang J, Dandekar T, Walter U (2008) Use of functional highly purified human platelets for the identification of new proteins of the IPP signaling pathway. Thromb Res 122:59–68

    Article  CAS  PubMed  Google Scholar 

  • Böger RH, Tsikas D, Bode-Böger SM, Phivthong-Ngam L, Schwedhelm E, Frölich JC (2004) Hypercholesterolemia impairs basal nitric oxide synthase turnover rate: a study investigating the conversion of l-[guanidino-15N2]-arginine to 15N-labeled nitrate by gas chromatography-mass spectrometry. Nitric Oxide 11:1–8

    Article  PubMed  CAS  Google Scholar 

  • Böhmer A, Beckmann B, Sandmann J, Tsikas D (2012) Doubts concerning functional endothelial nitric oxide synthase in human erythrocytes. Blood 119:1322–1323

    Article  PubMed  Google Scholar 

  • Böhmer A, Niemann J, Schwedhelm KS, Meyer HH, Gambaryan S, Tsikas D (2013) Potential pitfalls with the use of acetoxy (CH(3)COO) drugs in studies on nitric oxide synthase in platelets. Nitric Oxide 28:14–16

    Article  PubMed  CAS  Google Scholar 

  • Böhmer A, Gambaryan S, Flentje M, Jordan J, Tsikas D (2014a) [Ureido-15N]citrulline UPLC-MS/MS nitric oxide synthase (NOS) activity assay: development, validation, and applications to assess NOS uncoupling and human platelets NOS activity. J Chromatogr B 965:173–182

    Article  CAS  Google Scholar 

  • Böhmer A, Gambaryan S, Tsikas D (2014b) Human blood platelets lack nitric oxide synthase activity. Platelets. doi:10.3109/09537104.2014.974024

    PubMed  Google Scholar 

  • Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, Jo H (2002) Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at ser1179 by akt-independent mechanisms: role of protein kinase a. J Biol Chem 277:3388–3396

    Article  CAS  PubMed  Google Scholar 

  • Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, Geiger J, Sickmann A, Zahedi RP (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120:e73–e82

    Article  CAS  PubMed  Google Scholar 

  • Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JW, Zahedi RP (2014) What can proteomics tell us about platelets? Circ Res 114:1204–1219

    Article  CAS  PubMed  Google Scholar 

  • Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE, Lohmann SM, Schmidt HH (2000) Endothelial nitric-oxide synthase (type iii) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases. J Biol Chem 275:5179–5187

    Article  CAS  PubMed  Google Scholar 

  • Carrizzo A, Di Pardo A, Maglione V, Damato A, Amico E, Formisano L, Vecchione C, Squitieri F (2014) Nitric oxide dysregulation in platelets from patients with advanced huntington disease. PLoS One 9:e89745

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chakrabarti S, Clutton P, Varghese S, Cox D, Mascelli MA, Freedman JE (2004) Glycoprotein iib/iiia inhibition enhances platelet nitric oxide release. Thromb Res 113:225–233

    Article  CAS  PubMed  Google Scholar 

  • Chen LY, Mehta JL (1996) Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets. J Cardiovasc Pharmacol 27:154–158

    Article  CAS  PubMed  Google Scholar 

  • Cortese-Krott MM, Kelm M (2014) Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2:251–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cortese-Krott MM, Rodriguez-Mateos A, Sansone R, Kuhnle GGC, Thasian-Sivarajah S, Krenz T, Horn P, Krisp C, Wolters D, Heiß C, Kröncke KD, Hogg N, Feelisch M, Kelm M (2012) Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood 120:4229–4237

    Article  CAS  PubMed  Google Scholar 

  • Cozzi MR, Guglielmini G, Battiston M, Momi S, Lombardi E, Miller EC, De Zanet D, Mazzucato M, Gresele P, De Marco L (2014) Visualization of nitric oxide production by individual platelets during adhesion in flowing blood. Blood 125:697–705

    Article  PubMed  CAS  Google Scholar 

  • Cukor P, Lott PF (1965) The kinetics of the reaction of selenium(IV) with 2,3-diaminonaphthalene. J Phys Chem 69:3232–3239

    Article  CAS  Google Scholar 

  • Daff S (2010) NO synthase: structures and mechanisms. Nitric Oxide 23:1–11

    Article  CAS  PubMed  Google Scholar 

  • Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Ann Rev Pharmacol Toxicol 41:203–236

    Article  CAS  Google Scholar 

  • Fleming I, Schulz C, Fichtlscherer B, Kemp BE, Fisslthaler B, Busse R (2003) Amp-activated protein kinase (ampk) regulates the insulin-induced activation of the nitric oxide synthase in human platelets. Thromb Haemost 90:863–871

    CAS  PubMed  Google Scholar 

  • Förstermann U, Sessa WC (2012) Nitric oxide synthases: regaulation and function. Eur Heart J 33:829–837

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD (1997) Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest 100:350–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freedman JE, Li L, Sauter R, Keaney JJ (2000) Alpha-tocopherol and protein kinase C inhibition enhance platelet-derived nitric oxide release. FASEB J 14:2377–2379

    CAS  PubMed  Google Scholar 

  • Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93:96–105

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan S, Tsikas D (2015) Pitfalls with the measurement of NO synthase activity and expression in platelets and their circumvention by good mass spectrometry. http://www.bloodjournal.org/content/125/4/697. Accessed 27 Jan 2015

  • Gambaryan S, Geiger J, Schwarz UR, Butt E, Begonja A, Obergfell A, Walter U (2004) Potent inhibition of human platelets by cGMP analogs independent of cGMP-dependent protein kinase. Blood 103:2593–2600

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan S, Kobsar A, Hartmann S, Birschmann I, Kuhlencordt PJ, Muller-Esterl W, Lohmann SM, Walter U (2008) NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemost 6:1376–1384

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan S, Subramanian H, Rukoyatkina N, Herterich S, Walter U (2013) Soluble guanylyl cyclase is the only enzyme responsible for cyclic guanosine monophosphate synthesis in human platelets. Thromb Haemost 109:973–975

    Article  CAS  PubMed  Google Scholar 

  • Garelnabi M, Gupta V, Mallika V, Bhattacharjee J (2014) Platelet nitric oxide signaling system in patients with coronary artery disease. Ann Vasc Dis 4:99–105

    Article  Google Scholar 

  • Geiger J, Nolte C, Walter U (1994) Regulation of calcium mobilization and entry in human platelets by endothelium-derived factors. Am J Physiol 267(1 Pt 1):C236-C244

    CAS  PubMed  Google Scholar 

  • Gende OA (2005) Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 16:392–397

    Article  CAS  PubMed  Google Scholar 

  • Gkaliagkousi E, Ritter J, Ferro A (2007) Platelet-derived nitric oxide signaling and regulation. Circ Res 101:654–662

    Article  CAS  PubMed  Google Scholar 

  • Gkaliagkousi E, Corrigall V, Becker S, de Winter P, Shah A, Zamboulis C, Ritter J, Ferro A (2009) Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. Eur Heart J 30:3048–3054

    Article  CAS  PubMed  Google Scholar 

  • Glass DB, Frey W 2nd, Carr DW, Goldberg ND (1977a) Stimulation of human platelet guanylate cyclase by fatty acids. J Biol Chem 252:1279–1285

    CAS  PubMed  Google Scholar 

  • Glass DB, Gerrard JM, Townsend D, Carr DW, White JG, Goldberg ND (1977b) The involvement of prostaglandin endoperoxide formation in the elevation of cyclic gmp levels during platelet aggregation. J Cyclic Nucleotide Res 3:37–44

    CAS  PubMed  Google Scholar 

  • Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haslam RJ, Dickinson NT, Jang EK (1999) Cyclic nucleotides and phosphodiesterases in platelets. Thromb Haemost 82:412–423

    CAS  PubMed  Google Scholar 

  • Hibbs JB Jr, Westenfelder C, Taintor R, Vavrin Z, Kablitz C, Batanowski RL, Ward JH, Menlove RL, McMurry MP, Kushner JP, Samlowski WE (1992) Evidence for cytokine-inducible nitric oxide synthesis from l-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89:867–877

    Article  PubMed Central  PubMed  Google Scholar 

  • Italiano JE Jr, Patel-Hett S, Hartwig JH (2007) Mechanics of proplatelet elaboration. J Thromb Haemost 5(Suppl 1):18–23

    Article  CAS  PubMed  Google Scholar 

  • Jana P, Maiti S, Kahn NN, Sinha AK (2014) Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets. Blood Coagul Fibrinolysis. doi:10.1097/MBC.0000000000000085

    Google Scholar 

  • Ji Y, Ferracci G, Warley A, Ward M, Leung KY, Samsuddin S, Leveque C, Queen L, Reebye V, Pal P, Gkaliagkousi E, Seager M, Ferro A (2007) Beta-actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90. Proc Natl Acad Sci USA 104:8839–8844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    Article  CAS  Google Scholar 

  • Jurk K (2015) Analysis of platelet function and dysfunction. Hamostaseologie 35:60–72

    Article  CAS  PubMed  Google Scholar 

  • Kang ES, Ford K, Grokulsky G, Wang YB, Chiang TM, Acchiardo SR (2000) Normal circulating adult human red blood cells contain inactive NOS proteins. J Lab Clin Med 135:444–451

    Article  CAS  PubMed  Google Scholar 

  • Kawamato EM, Glezer I, Munhoz CD, Bernardes C, Scavone C, Marcourakis T (2002) Human platelet nitric oxide synthase activity: an optimized method. Braz J Pharm Sci 38:305–313

    CAS  Google Scholar 

  • Keimer R, Stutzer FK, Tsikas D, Troost R, Gutzki FM, Frölich JC (2003) Lack of oxidaative stress during sustained therapy with issorbide dinitrate and pentaerythrityl tertranitate in healthy humans: a randomized, double-blind crossover study. J Cardiovasc Pharmacol 41:284–292

    Article  CAS  PubMed  Google Scholar 

  • Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, Kumara I, Gharini P, Kabanova S, Ozüyaman B, Schnürch HG, Gödecke A, Weber AA, Robenek M, Robenek H, Bloch W, Rösen P, Kelm M (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107:2943–2951

    Article  CAS  PubMed  Google Scholar 

  • Kobsar A, Koessler J, Kehrer L, Gambaryan S, Walter U (2012) The thrombin inhibitors hirudin and refludan((r)) activate the soluble guanylyl cyclase and the cGMP pathway in washed human platelets. Thromb Haemost 107:521–529

    Article  CAS  PubMed  Google Scholar 

  • Leiper JM, Vallance P (2006) The synthesis and metabolism of asymmetric dimethylarginine (ADMA). Eur J Clin Pharmacol 26:33–38

    Article  Google Scholar 

  • Li Z, Xi X, Gu M, Feil R, Ye RD, Eigenthaler M, Hofmann F, Du X (2003) A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell 112:77–86

    Article  CAS  PubMed  Google Scholar 

  • Lohmann SM, Walter U (2005) Tracking functions of cGMP-dependent protein kinases (CGK). Front Biosci 10:1313–1328

    Article  CAS  PubMed  Google Scholar 

  • Lu WJ, Lee JJ, Chou DS, Jayakumar T, Fong TH, Hsiao G, Sheu JR (2011) A novel role of andrographolide, an NF-kappa b inhibitor, on inhibition of platelet activation: the pivotal mechanisms of endothelial nitric oxide synthase/cyclic GMP. J Mol Med (Berl) 89:1261–1273

    Article  CAS  Google Scholar 

  • Machlus KR, Italiano JE Jr (2013) The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 201:785–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234

    CAS  PubMed  Google Scholar 

  • Marshall SJ, Senis YA, Auger JM, Feil R, Hofmann F, Salmon G, Peterson JT, Burslem F, Watson SP (2004) Gpib-dependent platelet activation is dependent on src kinases but not map kinase or cGMP-dependent kinase. Blood 103:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Massucco P, Mattiello L, Russo I, Traversa M, Doronzo G, Anfossi G, Trovati M (2005) High glucose rapidly activates the nitric oxide/cyclic nucleotide pathway in human platelets via an osmotic mechanism. Thromb Haemost 93:517–526

    CAS  PubMed  Google Scholar 

  • Mayer B, Klatt P, Werner ER, Schmidt K (1995) Kinetics and mechanism of tetrahydrobiopterin-induced oxidation of nitric oxide. J Biol Chem 270:655–659

    Article  CAS  PubMed  Google Scholar 

  • Mehta JL, Chen LY, Kone BC, Mehta P, Turner P (1995) Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med 125:370–377

    CAS  PubMed  Google Scholar 

  • Meurer S, Pioch S, Gross S, Muller-Esterl W (2005) Reactive oxygen species induce tyrosine phosphorylation of and src kinase recruitment to no-sensitive guanylyl cyclase. J Biol Chem 280:33149–33156

    Article  CAS  PubMed  Google Scholar 

  • Momi S, Caracchini R, Falcinelli E, Evagelista S, Gresele P (2014) Stimulation of platelet nitric oxide production by nebivolol prevents thrombosis. Arterioscler Thromb Vasc Biol 34:820–829

    Article  CAS  PubMed  Google Scholar 

  • Moss MB, Siqueira MA, Mann GE, Brunini TM, Mendes-Ribeiro AC (2010) Platelet aggregation in arterial hypertension: is there a nitric oxide-urea connection? Clin Exp Pharmacol Physiol 37:167–172

    Article  CAS  PubMed  Google Scholar 

  • Munoz YC, Gomez GI, Moreno M, Solis CL, Valladares LE, Velarde V (2012) Dehydroepiandrosterone prevents the aggregation of platelets obtained from postmenopausal women with type 2 diabetes mellitus through the activation of the pkc/enos/no pathway. Horm Metab Res 44:625–631

    Article  CAS  PubMed  Google Scholar 

  • Muruganandam A, Mutus B (1994) Isolation of nitric oxide synthase from human platelets. Biochim Biophys Acta 1200:1–6

    Article  CAS  PubMed  Google Scholar 

  • Naseem KM (2008) eNOS, iNOS or no NOS, that is the question! J Thromb Haemost 6:1373–1375

    Article  CAS  PubMed  Google Scholar 

  • Naseem KM, Riba R (2008) Unresolved roles of platelet nitric oxide synthase. J Thromb Haemost 6:10–19

    Article  CAS  PubMed  Google Scholar 

  • O’Kane P, Xie L, Liu Z, Queen L, Jackson G, Ji Y, Ferro A (2009) Aspirin acetylates nitric oxide synthase type 3 in platelets thereby increasing its activity. Cardiovasc Res 83:123–130

    Article  PubMed  CAS  Google Scholar 

  • Özuyaman B, Godecke A, Kusters S, Kirchhoff E, Scharf RE, Schrader J (2005) Endothelial nitric oxide synthase plays a minor role in inhibition of arterial thrombus formation. Thromb Haemost 93:1161–1167

    PubMed  Google Scholar 

  • Park JW, Piknova B, Nghiem K, Lozier JN, Schechter AN (2014) Inhibitory effect of nitrite on coagulation processes demonstrated by thrombelastography. Nitric Oxide 40:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel B, Sharifi M, Milward AD, Oberprieler NG, Gibbins JM, Parkin S, Naseem KM (2006) Platelet nitric oxide synthase is activated by tyrosine dephosphorylation: possible role for shp-1 phosphatase. J Thromb Haemost 4:2423–2432

    Article  CAS  PubMed  Google Scholar 

  • Planchet E, Kaiser WM (2006) Nitric oxide production in plants: facts and fictions. Plant Signal Behav 1:46–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Queen LR, Xu B, Horinouchi K, Fisher I, Ferro A (2000) Beta(2)-adrenoceptors activate nitric oxide synthase in human platelets. Circ Res 87:39–44

    Article  CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1990a) Characterization of the l-arginine: nitric oxide pathway in human platelets. Br J Pharmacol 101:325–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1990b) An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ritter JM, Doktor HS, Benjamin N (1990) Paradoxical effect of bicarbonate on cytoplasmic pH. Lancet 335:1243–1246

    Article  CAS  PubMed  Google Scholar 

  • Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS (2001) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118:e101–e111

    Article  CAS  Google Scholar 

  • Ruggeri ZM (2007) The role of von Willebrand factor in thrombus formation. Thromb Res 120(Suppl 1):S5–S9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rümer S, Krischke M, Fekete A, Mueller MJ, Kaiser WM (2012) DAF-fluorescence without NO: elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol. Nitric Oxide 27:123–135

    Article  PubMed  CAS  Google Scholar 

  • Russo I, Doronzo G, Mattiello L, De Salve A, Trovati M, Anfossi G (2004) The activity of constitutive nitric oxide synthase is increased by the pathway camp/camp-activated protein kinase in human platelets. New insights into the antiaggregating effects of camp-elevating agents. Thromb Res 114:265–273

    Article  CAS  PubMed  Google Scholar 

  • Russo I, Del Mese P, Viretto M, Doronzo G, Mattiello L, Trovati M, Anfossi G (2008) Sodium azide, a bacteriostatic preservative contained in commercially available laboratory reagents, influences the responses of human platelets via the cGMP/pkg/vasp pathway. Clin Biochem 41:343–349

    Article  CAS  PubMed  Google Scholar 

  • Russo I, Viretto M, Barale C, Mattiello L, Doronzo G, Pagliarino A, Cavalot F, Trovati M, Anfossi G (2012) High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets. Diabetes 61:2913–2921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salvemini D, de Nucci G, Gryglewski RJ, Vane JR (1989) Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci USA 86:6328–6332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarz UR, Walter U, Eigenthaler M (2001) Taming platelets with cyclic nucleotides. Biochem Pharmacol 62:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Passacquale G, Gkaliagkousi E, Ritter J, Ferro A (2011) Platelet nitric oxide signalling in heart failure: role of oxidative stress. Cardiovasc Res 91:625–631

    Article  CAS  PubMed  Google Scholar 

  • Sharina IG, Sobolevsky M, Papakyriakou A, Rukoyatkina N, Spyroulias GA, Gambaryan S, Martin E (2014) The fibrate gemfibrozil is an NO- and heme-independent activator of soluble guanylyl cyclase: in vitro studies. Br J Pharmacol. doi:10.1111/bph.13055

    Google Scholar 

  • Siffert W, Gros G (1984) Carbonic anhydrase in human platelets. Biochem J 217:727–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siffert W, Fox G, Gros G (1984a) Carbonic anhydrase in human platelets: effects of carbonic anhydrase inhibition on platelet aggregation. Ann N Y Acad Sci 429:207–209

    Article  CAS  PubMed  Google Scholar 

  • Siffert W, Fox G, Gros G (1984b) The effect of carbonic anhydrase inhibition on the velocity of thrombin-stimulated platelet aggregation under physiological conditions. Biochem Biophys Res Commun 121:266–270

    Article  CAS  PubMed  Google Scholar 

  • Signorello MG, Segantin A, Passalacqua M, Leoncini G (2009) Homocysteine decreases platelet NO level via protein kinase c activation. Nitric Oxide 20:104–113

    Article  CAS  PubMed  Google Scholar 

  • Signorello MG, Giacobbe E, Passalacqua M (2011a) Leoncini G (2011a) The anandamide effect on no/cGMP pathway in human platelets. J Cell Biochem 112:924–932

    Article  CAS  PubMed  Google Scholar 

  • Signorello MG, Giacobbe E, Segantin A, Avigliano L, Sinigaglia F, Maccarrone M, Leoncini G (2011b) Activation of human platelets by 2-arachidonoylglycerol: role of pkc in no/cGMP pathway modulation. Curr Neurovasc Res 8:200–209

    Article  CAS  PubMed  Google Scholar 

  • Smolenski A (2012) Novel roles of camp/cGMP-dependent signaling in platelets. J Thromb Haemost 10:167–176

    Article  CAS  PubMed  Google Scholar 

  • Srihirun S, Sriwantana T, Unchern S, Kittikool D, Noulsri E, Pattanapanyasat K, Fucharoen S, Piknova B, Schechter AN, Sibmooh N (2012) Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation. PLoS One 7:e30380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanian H, Zahedi RP, Sickmann A, Walter U, Gambaryan S (2013) Phosphorylation of caldag-gefi by protein kinase a prevents rap1b activation. J Thromb Haemost 11:1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Tsikas D, Frölich JC, Borlak J (2003) Growth hormone induces eNOS expression and nitric oxide release in a cultured human endothelial cell line. FEBS Lett 555:567–571

    Article  CAS  PubMed  Google Scholar 

  • Trovati M, Massucco P, Mattiello L, Piretto V, Cavalot F, Mularoni E, Anfossi G (1996) The insulin-induced increase of guanosine-3′,5′-cyclic monophosphate in human platelets is mediated by nitric oxide. Diabetes 45:768–770

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2004) Measurement of nitric oxide synthase activity in vivo and in vitro by gas chromatography-mass spectrometry. Methods Mol Biol 279:81–103

    CAS  PubMed  Google Scholar 

  • Tsikas D (2005a) Analysis of the l-arginine/nitric oxide pathway: the unique role of mass spectrometry. Curr Pharm Anal 1:15–30

    Article  CAS  Google Scholar 

  • Tsikas D (2005b) Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Rad Res 39:797–815

    Article  CAS  Google Scholar 

  • Tsikas D (2008) A critical review and discussion of analytical methods in the l-arginine/nitric oxide area of basic and clinical research. Anal Biochem 379:139–163

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2009) A proposal for comparing methods of quantitative analysis of endogenous compounds in biological systems by using the relative lower limit of quantification (rLLOQ). J Chromatogr B 877:2244–2251

    Article  CAS  Google Scholar 

  • Tsikas D (2015a) Pitfalls with nitric synthase activity assays and their avoidance by gas chromatography-mass spectrometry. Kidney Int 87:860–861

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2015b) Can nitric oxide synthase activity be unequivocally measured in red blood cells and platelets? If yes, by which assay? Redox Biol. doi:10.1016/j.redox.2015.01.004

  • Tsikas D, Gambaryan S (2014) Blood platelets lack nitric oxide synthase. http://atvb.ahajournals.org/content/34/4/820/reply#atvbaha_el_32350. Accessed 29 Aug 2014

  • Tsikas D, Ikic M, Tewes KS, Raida M, Frölich JC (1999) Inhibition of platelet aggregation by S-nitroso-cysteine via cGMP-independent mechanisms: evidence of inhibition of thromboxane A2 synthesis in human blood platelets. FEBS Lett 442:162–166

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC (2000a) Endogenous nitric oxide synthase inhibitors are responsible for the l-arginine paradox. FEBS Lett 28(478):1–3

    Article  Google Scholar 

  • Tsikas D, Sandmann J, Savva A, Luessen P, Böger RH, Gutzki FM, Mayer B, Frölich JC (2000b) Assessment of nitric oxide synthase activity in vitro and in vivo by gas chromatography-mass spectrometry. J Chromatogr B 742:143–153

    Article  CAS  Google Scholar 

  • Tsikas D, Sandmann J, Beckmann B (2011) Analysis of NO and its metabolites by mass spectrometry. Comment on ‘detection of nitric oxide in tissue samples by ESI-MS’ by Z. Shen, A. Webster, K. J. Welham, C. E. Dyer, J. Greenman and S. J. Haswell. Analyst 136:407–410 (discussion 411)

    Article  CAS  PubMed  Google Scholar 

  • Tymvios C, Moore C, Jones S, Solomon A, Sanz-Rosa D, Emerson M (2009) Platelet aggregation responses are critically regulated in vivo by endogenous nitric oxide but not by endothelial nitric oxide synthase. Br J Pharmacol 158:1735–1742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uhlenhut K, Högger P (2012) Pitfalls and limitations in using 4,5-diaminofluorescein or evaluating the influence of polyphenols on nitric oxide release from endothelial cells. Free Radic Biol Med 52:2266–2275

    Article  CAS  PubMed  Google Scholar 

  • Villanueva VR, Giret M (1980) Human platelet arginase. Mol Cell Biochem 33:97–100

    Article  CAS  PubMed  Google Scholar 

  • Walter U, Gambaryan S (2009) cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handbook Exper Pharmacol 191:533–548

    Article  CAS  Google Scholar 

  • Wood KC, Cortese-Krott MM, Kovacic JC, Noguchi A, Liu VB, Wang X, Raghavachari N, Boehm M, Kato GJ, Kelm M, Gladwin MT (2013) Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb Vasc Biol 33:1861–1871

    Article  CAS  PubMed  Google Scholar 

  • Wu GJ, Lee JJ, Chou DS, Jayakumar T, Hsiao G, Chen WF, Sheu JR (2010) Inhibitory signaling of 17beta-estradiol in platelet activation: the pivotal role of cyclic amp-mediated nitric oxide synthase activation. Eur J Pharmacol 649:140–149

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV (2002) Interfering with nitric oxide measurements. J Biol Chem 277:48472–48478

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z (2009) Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via tlr4/myd88 and the cGMP-dependent protein kinase pathway. J Immunol 182:7997–8004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was granted to SG (Russian Fund of Fundamental Research 15-04-02438) and to DT (TS 60/4-1) from the Deutsche Forschungsgemeinschaft (Germany). We thank the reviewers for their useful comments and suggestions which helped improve our manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The studies reported in this article were approved by the Ethics Committee of the Hannover Medical School.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stepan Gambaryan or Dimitrios Tsikas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambaryan, S., Tsikas, D. A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite?. Amino Acids 47, 1779–1793 (2015). https://doi.org/10.1007/s00726-015-1986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1986-1

Keywords

Navigation