Skip to main content
Log in

Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C–N and C–O coupling reactions

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C–N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N′-dimethylethylenediamine as ligand and K2CO3 as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N′-dimethylethylene diamine) was used in the C–O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1

Similar content being viewed by others

References

  • Abreu AS, Silva NO, Ferreira PMT, Queiroz MJRP, Venanzi M (2003) New β,β-bis(benzo[b]thienyl)dehydroalanine derivatives: synthesis and cyclization. Eur J Org Chem 24:4792–4796. doi:10.1002/ejoc.200300394

    Article  Google Scholar 

  • Albinsson B, Kubista M, Norden B, Thulstrup EW (1989) Near-ultraviolet electronic-transitions of the tryptophan chromophore—linear dichroism, fluorescence anisotropy, and magnetic circular-dichroism spectra of some indole-derivatives. J Phys Chem 93(18):6646–6654. doi:10.1021/j100355a016

    Article  CAS  Google Scholar 

  • Bao W, Wang Z, Jiang Y (2005) l-Proline promoted Ullmann-type reaction of vinyl bromides with imidazoles in ionic liquids. Chem. Commun. 2849-2851. doi:10.1039/b501628b

  • Beletskaya IP, Cheprakov AV (2004) Copper in cross-coupling reactions—the post-Ullmann chemistry. Coordin Chem Rev 248(21–24):2337–2364. doi:10.1016/j.ccr.2004.09.014

    Article  CAS  Google Scholar 

  • Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules. Academic Press, London

    Google Scholar 

  • Bridges JW, Creaven PJ, Williams RT (1965) Fluorescence of some biphenyl derivatives. Biochem J 96(3):872–878

    PubMed  CAS  Google Scholar 

  • Chen WM, Li JJ, Fang DM, Feng C, Zhang CG (2008) Copper-Catalyzed One-Pot Multicomponent Coupling Reaction of Phenols, Amides, and 4-Bromphenyl Iodide. Org Lett 10(20):4565–4568. doi:10.1021/Ol801730g

    Article  PubMed  CAS  Google Scholar 

  • Creed D (1984) The photophysics and photochemistry of the near-UV absorbing amino-acids.1. tryptophan and its simple derivatives. Photochem Photobiol 39(4):537–562. doi:10.1111/j.1751-1097.1984.tb03890.x

    Article  CAS  Google Scholar 

  • Demas JN, Crosby GA (1971) Measurement of photoluminescence quantum yields—review. J Phys Chem 75(8):991–1024. doi:10.1021/j100678a001

    Article  Google Scholar 

  • Eftink MR (2000) Intrinsic fluorescence of proteins. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 6. Kluwer Academic/Plenum Publishers, New York, pp 1–13

  • Ferreira PMT, Monteiro LS, Pereira G, Ribeiro L, Sacramento J, Silva L (2007) Reactivity of dehydroamino acids and dehydrodipeptides towards N-bromosuccinimide: synthesis of β-Bromo- and β,β-dibromodehydroamino acid derivatives and of substituted 4-Imidazolidinones. Eur J Org Chem 2007(35):5934–5949. doi:10.1002/ejoc.200700669

    Article  Google Scholar 

  • Ferreira PMT, Monteiro LS, Pereira G (2008) Synthesis of substituted oxazoles from N-Acyl-β-hydroxyamino acid derivatives. Eur J Org Chem 2008(27):4676–4683. doi:10.1002/ejoc.200800602

    Article  Google Scholar 

  • Ferreira PMT, Monteiro LS, Queiroz MJRP, Pereira G (2009) Synthesis of bis-amino acid derivatives by Suzuki cross-coupling, Michael addition and substitution reactions. Amino Acids 36(3):429–436. doi:10.1007/s00726-008-0095-9

    Article  PubMed  CAS  Google Scholar 

  • Ferreira PMT, Castanheira EMS, Monteiro LS, Pereira G, Vilaça H (2010a) A mild high yielding synthesis of oxazole-4-carboxylate derivatives. Tetrahedron 66(45):8672–8680. doi:10.1016/j.tet.2010.09.014

    Article  CAS  Google Scholar 

  • Ferreira PMT, Monteiro LS, Pereira G (2010b) Synthesis and electrochemical behaviour of β-halodehydroamino acid derivatives. Amino Acids 39(2):499–513. doi:10.1007/s00726-009-0466-x

    Article  PubMed  CAS  Google Scholar 

  • Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260–1264. doi:10.1021/ed076p1260

    Article  CAS  Google Scholar 

  • Hissler M, Harriman A, Khatyr A, Ziessel R (1999) Intramolecular triplet energy transfer in pyrene-metal polypyridine dyads: a strategy for extending the triplet lifetime of the metal complex. Chem-Eur J 5(11):3366–3381. doi:10.1002/(SICI)1521-3765(19991105)5:11<3366:AID-CHEM3366>3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Jiang L, Job GE, Klapars A, Buchwald SL (2003) Copper-catalyzed coupling of amides and carbamates with vinyl halides. Org Lett 5(20):3667–3669. doi:10.1021/Ol035355c

    Article  PubMed  CAS  Google Scholar 

  • Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99(7):2039–2044. doi:10.1021/ja00449a004

    Article  CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

  • Lim EC, Li YH (1970) Luminescence of biphenyl and geometry of molecule in excited electronic states. J Chem Phys 52(12):6416–6423. doi:10.1063/1.1672958

    Article  CAS  Google Scholar 

  • Lippert H, Ritze HH, Hertel IV, Radloff W (2004) Femtosecond time-resolved analysis of the photophysics of the indole molecule. Chem Phys Lett 398(4–6):526–531. doi:10.1016/j.cplett.2004.09.111

    Article  CAS  Google Scholar 

  • Ma DW, Cai Q (2003) N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides. Org Lett 5(21):3799–3802. doi:10.1021/Ol0350947

    Article  PubMed  CAS  Google Scholar 

  • Ma DW, Cai QA (2008) Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc Chem Res 41(11):1450–1460. doi:10.1021/Ar8000298

    Article  PubMed  CAS  Google Scholar 

  • Martin R, Cuenca A, Buchwald SL (2007) Sequential copper-catalyzed vinylation/cyclization: an efficient synthesis of functionalized oxazoles. Org Lett 9(26):5521–5524. doi:10.1021/O17024718

    Article  PubMed  CAS  Google Scholar 

  • Monnier F, Taillefer M (2009) Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angewandte Chemie-Int Edn 48(38):6954–6971. doi:10.1002/anie.200804497

    Article  CAS  Google Scholar 

  • Morris JV, Mahaney MA, Huber JR (1976) Fluorescence Quantum Yield Determinations—9,10-Diphenylanthracene as a Reference-Standard in Different Solvents. J Phys Chem 80(9):969–974. doi:10.1021/j100550a010

    Article  CAS  Google Scholar 

  • Pan XH, Cai Q, Ma DW (2004) CuI/N,N-dimethylglycine-catalyzed coupling of vinyl halides with amides or carbamates. Org Lett 6(11):1809–1812. doi:10.1021/Ol049464i

    Article  PubMed  CAS  Google Scholar 

  • Shen RC, Porco JA (2000) Synthesis of enamides related to the salicylate antitumor macrolides using copper-mediated vinylic substitution. Org Lett 2(9):1333–1336. doi:10.1021/ol005800t

    Article  PubMed  CAS  Google Scholar 

  • Shen RC, Lin CT, Porco JA (2002) Total synthesis and stereochemical assignment of the salicylate antitumor macrolide lobatamide C. J Am Chem Soc 124(20):5650–5651. doi:10.1021/Ja026025a

    Article  PubMed  CAS  Google Scholar 

  • Silva NO, Abreu AS, Ferreira PMT, Monteiro LS, Queiroz M-JRP (2002) Synthesis using Suzuki cross couplings of sulfur analogues of dehydrotryptophan with a definite stereochemistry. Eur J Org Chem 2002(15):2524–2528. doi:10.1002/1099-0690(200208)2002:15<2524:aid-ejoc2524>3.0.co;2-w

    Article  Google Scholar 

  • Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Winnik FM (1993) Photophysics of preassociated pyrenes in aqueous polymer-solutions and in other organized media. Chem Rev 93(2):587–614. doi:10.1021/cr00018a001

    Google Scholar 

  • Xia N, Taillefer M (2008) Copper- or iron-catalyzed arylation of phenols from respectively aryl chlorides and aryl iodides. Chem-Eur J 14(20):6037–6039. doi:10.1002/chem.200800436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by FEDER through “Programa Operacional Factores de Competitividade”—COMPETE and by FCT—“Fundação para a Ciência e Tecnologia” through project “Projecto Estratégico—UI 686—2011-2012" Ref: PEst-C/QUI/UI0686/2011. The NMR spectrometer is part of the National NMR Network (RNRMN) and was purchased in the framework of the National Programme for Scientific Re-equipment, contract REDE/1517/RMN/2005, with funds from POCI 2010 (FEDER) and Fundação para a Ciência e a Tecnologia (FCT) and is supported with funds from FCT. G.P. acknowledges FCT for a PhD grant SFRH/BD/38766/2007. H.V. acknowledges FCT for a PhD grant SFRH/BD/7265/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. T. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, G., Vilaça, H. & Ferreira, P.M.T. Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C–N and C–O coupling reactions. Amino Acids 44, 335–344 (2013). https://doi.org/10.1007/s00726-012-1337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1337-4

Keywords

Navigation