Skip to main content
Log in

Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Lactation is associated with elevated catabolism of branched-chain amino acids (BCAA) in mammary glands to produce glutamate, glutamine, alanine, aspartate, and asparagine. This study determined effects of metabolic fuels on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 0.5 mM l-leucine and either l-[1-14C]leucine or l-[U-14C]leucine. The medium also contained 0–5 mM d-glucose, 0–2 mM l-glutamine, 0–4 mM dl-β-hydroxybutyrate, or 0–2 mM oleic acid. Rates of leucine decarboxylation were 60 % lower, but rates of α-ketoisocaproate production were 34 % higher, in the presence of 2 mM glucose than in its absence. All variables of leucine catabolism did not differ between 2 and 5 mM glucose or between 0 and 4 mM dl-β-hydroxybutyrate. Compared with 0–0.25 mM glutamine, 0.5 and 2 mM l-glutamine reduced leucine transport, transamination, and decarboxylation. In contrast, increasing the concentration of oleic acid from 0 to 2 mM dose-dependently stimulated leucine transamination, decarboxylation, and oxidation of carbons 2–6. Oleic acid also enhanced the abundance of cytosolic BCAA transaminase, while reducing the phosphorylated level (inactive state) of the E1α subunit of the mitochondrial branched-chain α-ketoacid dehydrogenase complex. Thus, hypoglycemia or ketosis in early lactation does not likely affect BCAA metabolism in mammary epithelial cells. Increasing circulating levels of BCAA and oleic acid may have great potential to increase the syntheses of glutamate, glutamine, aspartate, alanine, and asparagine by lactating mammary glands, thereby leading to enhanced production of milk for suckling neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BCAA:

Branched-chain amino acids

BCAT:

Branched-chain amino acid aminotransferase

BCKA:

Branched-chain α-ketoacids

BCKAD:

Branched-chain α-ketoacid dehydrogenase

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

α-KIC:

α-Ketoisocaproate

References

  • Abraham S, Madsen J, Chaikoff IL (1964) The influence of glucose on amino acid carbon incorporation into protein, fatty acids and carbon dioxide by lactating mammary gland slice. J Biol Chem 239:855–864

    PubMed  CAS  Google Scholar 

  • Annison EF, Linzell JL (1964) The oxidation and utilization of glucose and acetate by the mammary gland of the goat in relation to their over-all metabolism and to milk formation. J Physiol 175:372–385

    PubMed  CAS  Google Scholar 

  • Annison EF, Linzell JL, Fazakerley S et al (1967) The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk fat synthesis. Biochem J 102:637–647

    PubMed  CAS  Google Scholar 

  • Annison EF, Linzell JL, West CE (1968) Mammary and whole animal metabolism of glucose and fatty acids in fasting lactating goats. J Physiol 197:445–459

    PubMed  CAS  Google Scholar 

  • Appuhamy JA, Knoebel NA, Nayananjalie WA et al (2012) Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. J Nutr 142:484–491

    Google Scholar 

  • Bequette BJ, Douglass LW (2010) The frequency of unilateral milking alters leucine metabolism and amino acid removal by the mammary gland of lactating goats. J Dairy Sci 93:162–169

    Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814S–821S

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2012) Glutamate: a truly functional amino acid. Amino Acids. doi:10.1007/s00726-012-1280-4

    PubMed  Google Scholar 

  • Buse MG, Biggers F, Drier C et al (1973) The effect of epinephrine, glucagon, and the nutritional state on the oxidation of branched chain amino acids and pyruvate by isolated hearts and diaphragms of the rat. J Biol Chem 218:697–706

    Google Scholar 

  • Chen LX, Yin YL, Jobgen WS et al (2007) In vitro oxidation of essential amino acids by intestinal mucosal cells of growing pigs. Livest Sci 109:19–23

    Article  Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  PubMed  CAS  Google Scholar 

  • Conway ME, Huston SM (2000) Mammalian branched-chain aminotransferases. Methods Enzymol 324:355–365

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012a) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids. doi:10.1007/s00726-012-1264-4

    Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012b) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Google Scholar 

  • Davis SR, Bickerstaffe R, Hart DS (1978) Amino acid uptake by the mammary gland of the lactating ewe. Aust J Bioi Sci 31:123–132

    CAS  Google Scholar 

  • de Boer G, Trenkle A, Young JW (1985) Glucagon, insulin, growth hormone, and blood metabolites during energy restriction ketonemia of lactating cows. J Dairy Sci 68:326–337

    Article  PubMed  Google Scholar 

  • Desantiago S, Torres N, Suryawan A et al (1998) Regulation of branched-chain amino acid metabolism in the lactating rat. J Nutr 128:1165–1171

    PubMed  CAS  Google Scholar 

  • Doepel L, Lobley GE, Bernier JF et al (2009) Differences in splanchnic metabolism between late gestation and early lactation dairy cows. J Dairy Sci 92:3233–3243

    Article  PubMed  CAS  Google Scholar 

  • Ewaschuk JB, Murdoch GK, Johnson IR et al (2011) Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br J Nutr 106:870–877

    Article  PubMed  CAS  Google Scholar 

  • Fan B, Ikuyama S, Gu JQ et al (2009) Oleic acid-induced ADRP expression requires both AP-1 and PPAR response elements, and is reduced by Pycnogenol through mRNA degradation in NMuLi liver cells. Am J Physiol Endocrinol Metab 297:E112–E123

    Article  PubMed  CAS  Google Scholar 

  • Foster E, Fisher BG, Sartin JL et al (2012) Acute regulation of IGF-I by alterations in post-exercise macronutrients. Amino Acids 42:1005–1016

    Google Scholar 

  • Gao KG, Jiang ZY, Lin YC et al (2012) Dietary Larginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids. doi:10.1007/s00726-011-0960-9

  • Geng MM, Li TJ, Kong XF et al (2011) Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40:1513–1522

    Google Scholar 

  • Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4:409–454

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, Kobayashi R, Murakami T et al (2001) Regulation of branched-chain α-keto acid dehydrogenase kinase expression in rat liver. J Nutr 131:841S–845S

    PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Zhang W et al (2011) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids. doi:10.1007/s00726-011-1191-9

    Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2012) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids. doi:10.1007/s00726-012-1295-x

    Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kong XF, Tan BE, Yin YL et al (2012) l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem. doi:10.1016/j.jnutbio.2011.06.012

    Google Scholar 

  • Lei J, Feng DY, Zhang YL et al (2012) Nutritional and regulatory role of branched-chain amino acids in lactation. Front Biosci 17:2725–2739

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Google Scholar 

  • Li P, Knabe DA, Kim SW et al (2009) Lactating porcine mammary tissue catabolized branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011a) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Li FN, Yin YL, Tan BE et al (2011b) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Linzell JL, Annison EF, Fazakerley S et al (1967) The incorporation of acetate, stearate and d(-)-β-hydroxybutyrate into milk fat by the isolated perfused mammary gland of the goat. Biochem J 104:34–42

    PubMed  CAS  Google Scholar 

  • Linzell JL, Mepham TB, Annison EF et al (1969) Mammary metabolism in lactating sows: arteriovenous differences of milk precursors and the mammary metabolism of [14C]glucose and [14C]acetate. Br J Nutr 23:319–332

    Article  PubMed  CAS  Google Scholar 

  • Liu XD, Wu X, Yin YL et al (2012) Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids. doi:10.1007/s00726-011-0948-5

  • Odessey R, Goldberg AL (1972) Oxidation of leucine by rat skeletal muscle. Am J Physiol 233:1376–1383

    Google Scholar 

  • Paul HS, Adibi SA (1978) Leucine oxidation in diabetes and starvation: effects of ketone bodies on branched-chain amino acid oxidation in vitro. Metabolism 27:185–200

    Article  PubMed  CAS  Google Scholar 

  • Plaizier JC, Walton JP, McBride BW (2001) Effect of post-ruminal infusion of glutamine on plasma amino acids, milk yield and composition in lactating dairy cows. Can J Anim Sci 81:229–235

    Article  CAS  Google Scholar 

  • Reeds PJ, Burrin DG (2001) Glutamine metabolism: nutritional and clinical significance. J Nutr 131:2505S–2508S

    PubMed  CAS  Google Scholar 

  • Ren WK, Luo W, Wu MM et al (2011a) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids. doi:10.1007/s00726-011-1134-5

    Google Scholar 

  • Ren W, Yin YL, Liu G et al (2011b) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids. doi:10.1007/s00726-011-0942-y

    Google Scholar 

  • Rezaei R, Knabe DA, Li XL et al (2011) Enhanced efficiency of milk utilization for growth in surviving low-birth-weight piglets. J Anim Sci Biotech 2:73–83

    Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Robinson PH, Swanepoel N, Evans E (2008) Effects of feeding a ruminally protected lysine product, with or without isoleucine, valine and histidine, to lactating dairy cows on their productive performance and plasma amino acids profiles. Anim Feed Sci Technol 161:75–84

    Article  Google Scholar 

  • Rukkwamsuk T, Geelen MJH, Kruip TAM et al (2000) Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J Dairy Sci 83:52–59

    Article  PubMed  CAS  Google Scholar 

  • Sartin JL, Cummins KA, Keppainen RJ et al (1985) Glucagon, insulin, and growth hormone responses to glucose infusion in lactating dairy cows. Am J Physiol 248:E108–E114

    PubMed  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2011) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids. doi:10.1007/s00726-011-1168-8

    Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids. doi:10.1007/s00726-012-1235-9

    Google Scholar 

  • She P, Van Horn C, Reid T et al (2007) Obesity-related elevation in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol 293:E1552–E1563

    Article  CAS  Google Scholar 

  • Spincer J, Rook JAF, Towers KG (1969) The uptake of plasma constituents by the mammary gland of the sow. Biochem J 111:727–732

    PubMed  CAS  Google Scholar 

  • Suryawan A, Davis TA (2011) Regulation of protein synthesis by amino acids in muscle of neonates. Front Biosci 16:1445–1460

    Google Scholar 

  • Trottier NL, Shipley CF, Easter RA (1997) Plasma amino acid uptake by the mammary gland of the lactating sow. J Anim Sci 75:1266–1278

    PubMed  CAS  Google Scholar 

  • Viña JR, Williamson DH (1981) Effects of lactation on l-leucine metabolism in the rat. Biochem J 194:941–947

    PubMed  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed  CAS  Google Scholar 

  • Wholt JE, Clark JH, Derrig RG et al (1977) Valine, leucine, and isoleucine metabolism by lactating bovine mammary tissue. J Dairy Sci 60:1875–1882

    Article  Google Scholar 

  • Wilson FA, Suryawan A, Orellana RA et al (2011) Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs. Amino Acids 40:157–165

    Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE (1995) Regulation of glutamine and glucose metabolism by cell volume in lymphocytes and macrophages. Biochim Biophys Acta 1243:343–350

    Article  PubMed  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acid in sow’s colostrum and milk. J Nutr 124:415–424

    PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1987) Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem 19:937–943

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1988a) Effect of pyruvate, octanoate and glucose on leucine degradation in skeletal muscle from fed and fasted chicks. Int J Biochem 20:521–526

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1988b) The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J 255:139–144

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011a) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011b) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Xi PB, Jiang ZY, Zheng CT et al (2011a) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci 16:578–597

    Article  PubMed  CAS  Google Scholar 

  • Xi PB, Jiang ZY, Dai ZL et al (2011b) Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J Nutr Biochem. doi:10.1016/j.jnutbio.2011.05.009

    PubMed  Google Scholar 

  • Yao K, Yin YL, Li XL et al (2011) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids. doi:10.1007/s00726-011-1060-6

    Google Scholar 

  • Yin YL, Yao K, Liu ZJ et al (2010) Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39:1477–1486

    Google Scholar 

  • Zhu LH, Armentano LE, Bremmer DR et al (2000) Plasma concentration of urea, ammonia, glutamine around calving, and the relation of hepatic triglyceride, to plasma ammonia removal and blood acid-base balance. J Dairy Sci 83:734–740

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jian Lei was supported by a Postgraduate Scholarship from South China Agricultural University. Work in the authors’ laboratories was supported by National Natural Science Foundation of China grants (#31172217, 30901041), the Thousand-People Talent program at China Agricultural University, Chinese Universities Scientific Fund (2012RC024), National Research Initiative Competitive Grants No. 2008-35206-18764 and 2008-35203-19120 from the USDA National Institute of Food and Agriculture, Texas AgriLife Research Hatch Project no. H-8200, and American Heart Association. We thank Dr. Susan Hutson and Dr. Christopher Lynch for the kind provision of BCAT and BCKAD E1α antibodies, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lei, Dingyuan Feng or Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, J., Feng, D., Zhang, Y. et al. Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells. Amino Acids 43, 2179–2189 (2012). https://doi.org/10.1007/s00726-012-1302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1302-2

Keywords

Navigation