Skip to main content

Advertisement

Log in

l-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Arginine (l-Arg) is a conditionally essential amino acid and a natural constituent of dietary proteins. Studies in obese rats and type 2 diabetic humans have indicated that dietary supplementation with l-Arg can diminish gain in white adipose tissue (WAT) and improve insulin sensitivity. However, the effects of l-Arg on glucose homeostasis, body composition and energy metabolism remain unclear. In addition, no studies have, to our knowledge, examined whether l-Arg has beneficial effects as a dietary supplement in the mouse model. In the present study, we investigated the effects of l-Arg supplementation to male C57BL/6 mice on an array of physiological parameters. l-Arg supplemented mice were maintained on a low-protein diet and body composition, appetite regulation, glucose tolerance, insulin sensitivity and energy expenditure were evaluated. A significant reduction in epididymal WAT was observed in l-Arg supplemented mice compared with mice fed an isocaloric control diet. Surprisingly, the l-Arg supplemented animals were hyperphagic corresponding to a highly significant decrease in feed efficiency, as body weight developed in a similar pattern in both experimental groups. Glucose homeostasis experiments revealed a major effect of l-Arg supplementation on glucose tolerance and insulin sensitivity, interestingly, independent of a parallel regulation in whole-body adiposity. Increased l-Arg ingestion also raised energy expenditure; however, no concurrent effect on locomotor activity, substrate metabolism or expression of uncoupling proteins (UCP1 and UCP2) in adipose tissues was displayed. In conclusion, dietary l-Arg supplementation substantially affects an array of metabolic-associated parameters including a reduction in WAT, hyperphagia, improved insulin sensitivity and increased energy expenditure in mice fed a low-protein diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Parada E, Eisentraut AM, Unger RH (1969) Pancreatic glucagon secretion in normal and diabetic subjects. Am J Med Sci 257(6):415–419

    Article  PubMed  CAS  Google Scholar 

  • Alba-Roth J, Muller OA, Schopohl J, von Werder K (1988) Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab 67(6):1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295(6):E1323–E1332

    Article  PubMed  CAS  Google Scholar 

  • Bagdade JD, Bierman EL, Porte D Jr (1967) The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J Clin Invest 46(10):1549–1557

    Article  PubMed  CAS  Google Scholar 

  • Buettner R, Scholmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15(4):798–808

    Article  CAS  Google Scholar 

  • Cave MC, Hurt RT, Frazier TH, Matheson PJ, Garrison RN, McClain CJ, McClave SA (2008) Obesity, inflammation, and the potential application of pharmaconutrition. Nutr Clin Pract 23(1):16–34

    Article  PubMed  Google Scholar 

  • Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312(5775):927–930

    Article  PubMed  CAS  Google Scholar 

  • Du F, Higginbotham DA, White BD (2000) Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J Nutr 130(3):514–521

    PubMed  CAS  Google Scholar 

  • Ellacott KL, Morton GJ, Woods SC, Tso P, Schwartz MW (2010) Assessment of feeding behavior in laboratory mice. Cell Metab 12(1):10–17

    Article  PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135(4):714–721

    PubMed  CAS  Google Scholar 

  • Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28(4):629–636

    Article  PubMed  CAS  Google Scholar 

  • Halton TL, Hu FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23(5):373–385

    PubMed  Google Scholar 

  • Jobgen W, Fu WJ, Gao H, Li P, Meininger CJ, Smith SB, Spencer TE, Wu G (2009a) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37(1):187–198

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, Spencer TE, Fried SK, Wu G (2009b) Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139(2):230–237

    PubMed  CAS  Google Scholar 

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846

    Article  PubMed  CAS  Google Scholar 

  • Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, Astrup A (2010) Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med 363(22):2102–2113

    Article  PubMed  CAS  Google Scholar 

  • Lazzer S, Bedogni G, Lafortuna CL, Marazzi N, Busti C, Galli R, De Col A, Agosti F, Sartorio A (2010) Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity 18(1):71–78

    Article  PubMed  Google Scholar 

  • Lee S, Muniyappa R, Yan X, Chen H, Yue LQ, Hong EG, Kim JK, Quon MJ (2008) Comparison between surrogate indexes of insulin sensitivity and resistance and hyperinsulinemic euglycemic clamp estimates in mice. Am J Physiol Endocrinol Metab 294(2):E261–E270

    Article  PubMed  CAS  Google Scholar 

  • Lowell BB, Bachman ES (2003) Beta-Adrenergic receptors, diet-induced thermogenesis, and obesity. J Biol Chem 278(32):29385–29388

    Article  PubMed  CAS  Google Scholar 

  • Lucotti P, Setola E, Monti LD, Galluccio E, Costa S, Sandoli EP, Fermo I, Rabaiotti G, Gatti R, Piatti P (2006) Beneficial effects of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 291(5):E906–E912

    Article  PubMed  CAS  Google Scholar 

  • Macotela Y, Emanuelli B, Bang AM, Espinoza DO, Boucher J, Beebe K, Gall W, Kahn CR (2011) Dietary leucine—an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6(6):e21187

    Article  PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39(2):349–357

    Article  PubMed  CAS  Google Scholar 

  • Moinard C, Cynober L (2007) Citrulline: a new player in the control of nitrogen homeostasis. J Nutr 137(6 Suppl 2):1621S–1625S

    PubMed  CAS  Google Scholar 

  • Nairizi A, She P, Vary TC, Lynch CJ (2009) Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice. J Nutr 139(4):715–719

    Article  PubMed  CAS  Google Scholar 

  • Noatsch A, Petzke KJ, Millrose MK, Klaus S (2010) Body weight and energy homeostasis was not affected in C57BL/6 mice fed high whey protein or leucine-supplemented low-fat diets. Eur J Nutr 50(6):479–488

    Article  PubMed  Google Scholar 

  • Osowska S, Moinard C, Neveux N, Loi C, Cynober L (2004) Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut 53(12):1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Piatti PM, Monti LD, Valsecchi G, Magni F, Setola E, Marchesi F, Galli-Kienle M, Pozza G, Alberti KG (2001) Long-term oral l-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 24(5):875–880

    Article  PubMed  CAS  Google Scholar 

  • Plum L, Wunderlich FT, Baudler S, Krone W, Bruning JC (2005) Transgenic and knockout mice in diabetes research: novel insights into pathophysiology, limitations, and perspectives. Physiology 20(3):152–161

    Article  PubMed  CAS  Google Scholar 

  • Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22(4):359–370

    Article  PubMed  CAS  Google Scholar 

  • Richard D, Carpentier AC, Dore G, Ouellet V, Picard F (2010) Determinants of brown adipocyte development and thermogenesis. Int J Obes (Lond) 34(Suppl 2):S59–S66

    Article  CAS  Google Scholar 

  • Rose WC (1947) The role of the amino acids in human nutrition. Proc Am Philos Soc 91(1):112–116

    PubMed  CAS  Google Scholar 

  • Rothwell NJ, Stock MJ (1979) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281(5726):31–35

    Article  PubMed  CAS  Google Scholar 

  • Rothwell NJ, Stock MJ, Tyzbir RS (1983) Mechanisms of thermogenesis induced by low protein diets. Metabolism 32(3):257–261

    Article  PubMed  CAS  Google Scholar 

  • Sandoval DA, Obici S, Seeley RJ (2009) Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov 8(5):386–398

    Article  PubMed  CAS  Google Scholar 

  • Sener A, Lebrun P, Blachier F, Malaisse WJ (1989) Stimulus-secretion coupling of arginine-induced insulin release insulinotropic action of agmatine. Biochem Pharmacol 38(2):327–330

    Article  PubMed  CAS  Google Scholar 

  • Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104(4):531–543

    Article  PubMed  CAS  Google Scholar 

  • Stefater MA, Seeley RJ (2010) Central nervous system nutrient signaling: the regulation of energy balance and the future of dietary therapies. Annu Rev Nutr 30:219–235

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, Huang R, Tang W, Shinzato I, Smith SB, Wu G (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37(1):169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin Y, Liu Z, Tang W, Xu H, Kong X, Li X, Yao K, Gu W, Smith SB, Wu G (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22(5):441–445

    Article  PubMed  CAS  Google Scholar 

  • Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60(3):329–339

    Article  PubMed  CAS  Google Scholar 

  • Vasilijevic A, Vojcic L, Dinulovic I, Buzadzic B, Korac A, Petrovic V, Jankovic A, Korac B (2010) Expression pattern of thermogenesis-related factors in interscapular brown adipose tissue of alloxan-treated rats: beneficial effect of l-arginine. Nitric Oxide 23(1):42–50

    Article  PubMed  CAS  Google Scholar 

  • Webster AJ (1993) Energy partitioning, tissue growth and appetite control. Proc Nutr Soc 52(1):69–76

    Article  PubMed  CAS  Google Scholar 

  • Wellendorph P, Hansen KB, Balsgaard A, Greenwood JR, Egebjerg J, Bräuner-Osborne H (2005) Deorphanization of GPRC6A: a promiscuous l-alpha-amino acid receptor with preference for basic amino acids. Mol Pharmacol 67(3):589–597

    Article  PubMed  CAS  Google Scholar 

  • Wellendorph P, Johansen LD, Bräuner-Osborne H (2009) Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol 76(3):453–465

    Article  PubMed  CAS  Google Scholar 

  • Womack M, Rose WC (1947) The role of proline, hydroxyproline, and glutamic acid in growth. J Biol Chem 171(37):37–50

    CAS  Google Scholar 

  • Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93(11 Suppl 1):S37–S50

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336(Pt 1):1–17

    PubMed  CAS  Google Scholar 

  • Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56(6):1647–1654

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Danish Ministry of Science, Technology, and Innovation through the research program of the UNIK: Food Fitness and Pharma for Health and Disease, and the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Bräuner-Osborne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemmensen, C., Madsen, A.N., Smajilovic, S. et al. l-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances. Amino Acids 43, 1265–1275 (2012). https://doi.org/10.1007/s00726-011-1199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1199-1

Keywords

Navigation